使用SparkGraphX进行图计算时的编码问题

使用SparkGraphX进行图计算时的编码问题

在SparkGraphX体系中,要求图网络中的点ID必须为Long类型,不像Python中的networkX工具包支持字符串类型的节点表示,但在现实场景中,有很多情况下,点ID都是字符串类型的,如身份证号、设备号或是埋点采集到的uid等等,都不是单纯能够使用Long类型来表示的。

为解决上述问题,本文将提出两种解决方案,分别是Hash编码以及Row_number编码,接下来本文将详细描述上述两种方案的优缺点以及实现代码(基于Scala实现)。

文章目录


一、Hash编码

与Python自带的Hash编码不同,Java中的hash编码,多次执行,对同一变量得到的Hash编码相同,Python中带有随机因子,多次执行结果不一样。

但Java自带的Hash编码由于使用了截断(得到的编码是Int类型,取值范围相对较小),在大数据量容易出现Hash碰撞问题,但在数据量较小的时候,还是非常好用的并且实现非常简单。
Hash编码

一、pandas是什么?

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、Row_number编码

另一种编码方案即为借助SQL中的开窗函数row_number的功能,对所有的点ID都生成一个递增的编码,保留原ID与编码之间的对应关系(一个DataFrame),使用编码ID进行后续的图计算,计算完成后再将编码结果转换回原ID结果。

相比Hash编码,这种编码方案的优点很明显,完全不用担心碰撞问题,能够精准保证原ID与编码ID一一对应,但缺点也很明显,计算效率会降低,尤其在大数据量下执行row_number操作,虽然Spark内部对这类函数做了优化,但是效率仍然是一个大问题,依靠提高并发以及分配更多的资源能一定程度上提高运行效率,但与Hash编码依然是没法比,还是要做权衡,如果数据量不大,对精度要求不高,一般优先使用Hash编码;如果数据量较大或是对精度要求比较高的场景,则优先考虑row_number实现方案。

Row_number编码 实现代码


总结

相关推荐
小小王app小程序开发1 天前
淘宝扭蛋机小程序核心玩法拆解与技术运营分析
大数据·小程序
得物技术1 天前
从“人治”到“机治”:得物离线数仓发布流水线质量门禁实践
大数据·数据仓库
Data_Journal1 天前
【无标题】
大数据·服务器·前端·数据库·人工智能
zhangxl-jc1 天前
StreamPark2.1.7 添加Flink Home 报错 base64 character 2d 解决方法
大数据·flink
峥嵘life1 天前
Android 16 EDLA测试STS模块
android·大数据·linux·学习
洛阳纸贵1 天前
JAVA高级工程师--Elasticsearch安装以及内置分词器、IK分词器
大数据·elasticsearch·搜索引擎
186******205311 天前
项目开发基础知识:从概念到落地的全流程指南
大数据·人工智能
说私域1 天前
AI智能名片商城小程序数据清洗的持续运营策略与实践研究
大数据·人工智能·小程序·流量运营·私域运营
Howie Zphile1 天前
Git 拉 NocoBase 2.0 beta(next 分支),并“每天自动更新 + 自动编译 + 自动重启”
大数据·git·elasticsearch
sunshine8851 天前
合规性管理:财务安全与业务连续性的双重保障
大数据·运维·人工智能