使用SparkGraphX进行图计算时的编码问题

使用SparkGraphX进行图计算时的编码问题

在SparkGraphX体系中,要求图网络中的点ID必须为Long类型,不像Python中的networkX工具包支持字符串类型的节点表示,但在现实场景中,有很多情况下,点ID都是字符串类型的,如身份证号、设备号或是埋点采集到的uid等等,都不是单纯能够使用Long类型来表示的。

为解决上述问题,本文将提出两种解决方案,分别是Hash编码以及Row_number编码,接下来本文将详细描述上述两种方案的优缺点以及实现代码(基于Scala实现)。

文章目录


一、Hash编码

与Python自带的Hash编码不同,Java中的hash编码,多次执行,对同一变量得到的Hash编码相同,Python中带有随机因子,多次执行结果不一样。

但Java自带的Hash编码由于使用了截断(得到的编码是Int类型,取值范围相对较小),在大数据量容易出现Hash碰撞问题,但在数据量较小的时候,还是非常好用的并且实现非常简单。
Hash编码

一、pandas是什么?

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、Row_number编码

另一种编码方案即为借助SQL中的开窗函数row_number的功能,对所有的点ID都生成一个递增的编码,保留原ID与编码之间的对应关系(一个DataFrame),使用编码ID进行后续的图计算,计算完成后再将编码结果转换回原ID结果。

相比Hash编码,这种编码方案的优点很明显,完全不用担心碰撞问题,能够精准保证原ID与编码ID一一对应,但缺点也很明显,计算效率会降低,尤其在大数据量下执行row_number操作,虽然Spark内部对这类函数做了优化,但是效率仍然是一个大问题,依靠提高并发以及分配更多的资源能一定程度上提高运行效率,但与Hash编码依然是没法比,还是要做权衡,如果数据量不大,对精度要求不高,一般优先使用Hash编码;如果数据量较大或是对精度要求比较高的场景,则优先考虑row_number实现方案。

Row_number编码 实现代码


总结

相关推荐
zskj_zhyl2 分钟前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网
AllData公司负责人17 分钟前
实时开发IDE部署指南
大数据·ide·开源
电商数据girl1 小时前
有哪些常用的自动化工具可以帮助处理电商API接口返回的异常数据?【知识分享】
大数据·分布式·爬虫·python·系统架构
ZeroNews内网穿透1 小时前
服装零售企业跨区域运营难题破解方案
java·大数据·运维·服务器·数据库·tcp/ip·零售
百胜软件@百胜软件1 小时前
重庆兰瓶×百胜软件正式签约,全渠道中台赋能美业新零售
大数据·零售
江瀚视野1 小时前
美团即时零售日订单突破1.2亿,即时零售生态已成了?
大数据·人工智能·零售
时序数据说2 小时前
IoTDB:专为物联网场景设计的高性能时序数据库
大数据·数据库·物联网·开源·时序数据库·iotdb
阿里云大数据AI技术3 小时前
ODPS 15周年开发者活动|征文+动手实践双赛道开启,参与活动赢定制好礼!
大数据·人工智能·云计算
19H3 小时前
Flink-Source算子点位提交问题(Earliest)
大数据·flink
运器1234 小时前
【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
大数据·人工智能·算法·机器学习·支持向量机·ai·ai编程