使用SparkGraphX进行图计算时的编码问题

使用SparkGraphX进行图计算时的编码问题

在SparkGraphX体系中,要求图网络中的点ID必须为Long类型,不像Python中的networkX工具包支持字符串类型的节点表示,但在现实场景中,有很多情况下,点ID都是字符串类型的,如身份证号、设备号或是埋点采集到的uid等等,都不是单纯能够使用Long类型来表示的。

为解决上述问题,本文将提出两种解决方案,分别是Hash编码以及Row_number编码,接下来本文将详细描述上述两种方案的优缺点以及实现代码(基于Scala实现)。

文章目录


一、Hash编码

与Python自带的Hash编码不同,Java中的hash编码,多次执行,对同一变量得到的Hash编码相同,Python中带有随机因子,多次执行结果不一样。

但Java自带的Hash编码由于使用了截断(得到的编码是Int类型,取值范围相对较小),在大数据量容易出现Hash碰撞问题,但在数据量较小的时候,还是非常好用的并且实现非常简单。
Hash编码

一、pandas是什么?

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、Row_number编码

另一种编码方案即为借助SQL中的开窗函数row_number的功能,对所有的点ID都生成一个递增的编码,保留原ID与编码之间的对应关系(一个DataFrame),使用编码ID进行后续的图计算,计算完成后再将编码结果转换回原ID结果。

相比Hash编码,这种编码方案的优点很明显,完全不用担心碰撞问题,能够精准保证原ID与编码ID一一对应,但缺点也很明显,计算效率会降低,尤其在大数据量下执行row_number操作,虽然Spark内部对这类函数做了优化,但是效率仍然是一个大问题,依靠提高并发以及分配更多的资源能一定程度上提高运行效率,但与Hash编码依然是没法比,还是要做权衡,如果数据量不大,对精度要求不高,一般优先使用Hash编码;如果数据量较大或是对精度要求比较高的场景,则优先考虑row_number实现方案。

Row_number编码 实现代码


总结

相关推荐
俊哥大数据4 分钟前
【实战项目5】基于Flink新闻热搜大数据实时分析项目
大数据·flink
俊哥大数据8 分钟前
【实战项目3】基于Flink广告投放业务领域大数据实时分析项目
大数据·flink
学好statistics和DS22 分钟前
Git 同步冲突
大数据·git·elasticsearch
俊哥大数据28 分钟前
【实战项目4】Hadoop金融信贷大数据离线分析项目
大数据·hadoop·金融
samLi062029 分钟前
【工具变量】上市公司是否为高科技行业DID数据-含参考文献及代码(1990-2024年)
大数据
智能相对论10 小时前
CES深度观察丨智能清洁的四大关键词:变形、出户、体验以及生态协同
大数据·人工智能
焦耳热科技前沿12 小时前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
min18112345613 小时前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能
武子康13 小时前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习
数据智研13 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析