第L1周:机器学习-数据预处理

第L1周:机器学习-数据预处理

学习要点: ****

  1. 学习如何处理缺损数据
  2. 尝试进行Label编码
  3. 使用train_test_split进行数据划分
  4. 学习特征标准化

在开始本周的学习任务前,需要先安装好numpy、Pandas、sklearn三个包,安装方法如下:

pip install numpy

pip install Pandas

pip install scikit-learn

🥮 代码学习
🏡 我的环境:

语言环境:Python3.10

编译器:PyCharm

第1步:导入库

复制代码
import numpy  as np
import pandas as pd

第2步:导入数据集

●数据集:

![[Data.csv]]

复制代码
dataset = pd.read_csv('../data/Data.csv')
print(dataset)
复制代码
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 3].values
print(X)
复制代码
print(Y)

第3步:处理丢失数据

SimpleImputer函数用于处理缺损值,详细介绍见文末。

复制代码
# 处理丢失数据 SimpleImputer可以处理
from sklearn.impute import SimpleImputer
imputer =  SimpleImputer(strategy='mean')  # 用均值来填补丢失值
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
print("使用SimpleImputer处理丢失数据后的X:")
print(X)

结果如下:

复制代码
array([['France', 44.0, 72000.0],
       ['Spain', 27.0, 48000.0],
       ['Germany', 30.0, 54000.0],
       ['Spain', 38.0, 61000.0],
       ['Germany', 40.0, 63777.77777777778],
       ['France', 35.0, 58000.0],
       ['Spain', 38.77777777777778, 52000.0],
       ['France', 48.0, 79000.0],
       ['Germany', 50.0, 83000.0],
       ['France', 37.0, 67000.0]], dtype=object)

注:原来的NaN处被38.7777778和63.7777778,这个值是通过mean也就是平均值而来,手动计算一下:(44+27+30+38+40+35+48+50+37) / 9 = 38.77777777777778

第4步:进行Label编码

为什么要进行Label编码?进行Label编码的主要原因是为了将文本转换为模型可以理解的数值形式。

复制代码
from sklearn.preprocessing import LabelEncoder, OneHotEncoder

labelencoder_X = LabelEncoder()
# X[:, 0]是指X的所有行中的第1列进行处理
X[ : , 0]      = labelencoder_X.fit_transform(X[ : , 0])  
print(X)

结果:

复制代码
array([[0, 44.0, 72000.0],
       [2, 27.0, 48000.0],
       [1, 30.0, 54000.0],
       [2, 38.0, 61000.0],
       [1, 40.0, 63777.77777777778],
       [0, 35.0, 58000.0],
       [2, 38.77777777777778, 52000.0],
       [0, 48.0, 79000.0],
       [1, 50.0, 83000.0],
       [0, 37.0, 67000.0]], dtype=object)

注:根据结果可以看到,labelEncoder将原X中的"France,Germany"等等按字母顺序进行了一个编号。编码规则一定是写死的吗?

复制代码
labelencoder_Y = LabelEncoder()  
Y = labelencoder_Y.fit_transform(Y)  
print("对Y进行label编码:")  
print(Y)

注:Y原来的值是:Y = dataset.iloc[ : , 3].values 即下面这一列:

很明显:No被编码成0,Yes被编码成1. 这里很奇怪,它并没有按No和Yes的字母顺序进行编码。那么它的编码规则到底是什么?labelencode的fit里进行编码规则的设定,参考:LabelEncoder 类属性类方法及用法-CSDN博客

第5步:拆分为训练集和测试集

复制代码
# 拆分训练集和测试集  
from sklearn.model_selection import  train_test_split  
X_train, X_teest, Y_train, Y_test = train_test_split(X, 
													Y, 
													test_size=0.2, 
													random_state= 0)

🌟 train_test_split()函数详解

train_test_split():将数据集划分为测试集与训练集。

●X:所要划分的整体数据的特征集;

●Y:所要划分的整体数据的结果;

●test_size:测试集数据量在整体数据量中的占比(可以理解为X_test与X的比值);

●random_state:

○若不填或者填0,每次生成的数据都是随机,可能不一样。

○若为整数,每次生成的数据都相同;

第6步:特征标准化

解释:

复制代码
print("X_train:\n", X_train)
复制代码
print("X_test:\n", X_test)

StandardScaler()是scikit-learn库中用于数据标准化处理的一个常用工具。标准化目的是将数据缩放到一个均值为 0,标准差为 1 的正太分布,消除不同特征量纲的影响,尤其是像支持向量机 (SVM)、逻辑回归、神经网络等基于梯度的模型。

🍖 知识点讲解

1.SimpleImputer()处理缺损数据

sklearn.impute.SimpleImputer 是 Scikit-learn 库中的一个类,用于处理数据集中缺失值的插补。它通过替换缺失值为统计值(例如均值、中位数或众数)或指定的常数来处理缺失数据。以下是 SimpleImputer 的详细介绍:

🔎 参数详情:

●missing_values: 指定需要替换的缺失值。默认值为 np.nan,表示替换 NaN 值。

●strategy: 指定替换策略。可选值包括:

○'mean': 用均值替换缺失值。仅适用于数值数据。

○'median': 用中位数替换缺失值。仅适用于数值数据。

○'most_frequent': 用众数(出现频率最高的值)替换缺失值。适用于数值和分类数据。

○'constant': 用常数替换缺失值。需要同时指定 fill_value 参数。

●fill_value: 在 strategy='constant' 时,指定替换缺失值的常数。默认值为 None。

●add_indicator: 是否添加二进制指示变量,用于指示缺失值的位置。默认值为 False。

🔎 SimpleImputer方法该要:

●fit(X, y=None): 拟合 imputer,计算用于替换缺失值的统计值。

●transform(X): 使用拟合的 imputer 替换缺失值。

●fit_transform(X, y=None): 结合 fit 和 transform,对数据集进行拟合并替换缺失值。

以下是一些使用 SimpleImputer 的示例:

👉 用均值替换缺失值

复制代码
import numpy as np
from sklearn.impute import SimpleImputer
# 创建数据集,其中包含缺失值
X = [[1, 2], [np.nan, 3], [7, 6], [4, np.nan]]
# 创建 SimpleImputer 对象,指定用均值替换缺失值
imputer = SimpleImputer(strategy='mean')
# 训练 imputer 并转换数据
X_imputed = imputer.fit_transform(X)
print(X_imputed)

👉 用常数替换缺失值

复制代码
# 创建 SimpleImputer 对象,指定用常数 -1 替换缺失值
imputer = SimpleImputer(strategy='constant', fill_value=-1)
# 训练 imputer 并转换数据
X_imputed = imputer.fit_transform(X)
print(X_imputed)
相关推荐
冷雨夜中漫步2 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴2 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再2 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
win4r3 小时前
🚀OpenClaw高级使用经验分享!2026年最强生产力!五分钟打造多Agent协作编程开发团队!模型容灾机制深度配置+云端Gateway操控本地macOS!
aigc·openai·ai编程
喵手4 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934734 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy4 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
肖永威5 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ5 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
枷锁—sha6 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全