【PyTorch常用库函数】一文向您详解 with torch.no_grad(): 的高效用法


🎬 鸽芷咕个人主页
🔥 个人专栏 : 《C++干货基地》《粉丝福利》

⛺️生活的理想,就是为了理想的生活!


引言

在训练神经网络时,我们通常需要计算损失函数关于模型参数的梯度,以便通过梯度下降等优化算法更新参数。然而,在评估阶段,我们只关心模型的输出,而不需要更新参数。在这种情况下,使用 with torch.no_grad(): 上下文管理器可以有效地告诉 PyTorch 不要计算或存储梯度,从而节省计算资源,加快评估速度。

文章目录

with torch.no_grad() 的原理

with torch.no_grad() 是一个上下文管理器,它会在进入该上下文时自动将模型设置为"评估模式",并在此期间禁用梯度计算。这意味着在此上下文中,所有计算得出的张量都不会跟踪它们的计算历史,从而不会计算梯度。当退出该上下文时,模型会恢复到之前的模式(通常是"训练模式")。

使用场景

1. 模型评估

在训练过程中,我们经常需要在验证集或测试集上评估模型的性能。这时,我们使用 with torch.no_grad(): 来确保在评估过程中不会计算梯度,从而节省计算资源。

python 复制代码
model.eval()  # 将模型设置为评估模式
with torch.no_grad():
    for data, target in test_loader:
        output = model(data)
        loss = criterion(output, target)
        test_loss += loss.item()
        _, predicted = torch.max(output, 1)
        total += target.size(0)
        correct += (predicted == target).sum().item()

2. 模型推理

在模型部署到生产环境后,我们通常只需要进行前向传播以获得模型的输出。在这种情况下,我们同样可以使用 with torch.no_grad(): 来提高推理速度。

python 复制代码
with torch.no_grad():
    output = model(input_data)

注意事项

  • with torch.no_grad() 只影响它内部的代码块。退出该上下文后,模型会恢复到之前的状态。
  • 如果在训练过程中需要频繁地在训练和评估模式之间切换,可以考虑使用模型对象的 eval()train() 方法,这两个方法会分别将模型设置为评估模式和训练模式。

结论

with torch.no_grad(): 是 PyTorch 中一个非常有用的工具,它可以帮助我们在不需要计算梯度的场景中节省计算资源,加快模型评估和推理的速度。通过正确使用这个上下文管理器,我们可以更高效地开发和部署深度学习模型。

相关推荐
CareyWYR4 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信5 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20096 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟6 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
小糖学代码6 小时前
LLM系列:1.python入门:3.布尔型对象
linux·开发语言·python
央链知播6 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训6 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
Data_agent6 小时前
1688获得1688店铺详情API,python请求示例
开发语言·爬虫·python
YIN_尹7 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55187 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化