【PyTorch常用库函数】一文向您详解 with torch.no_grad(): 的高效用法


🎬 鸽芷咕个人主页
🔥 个人专栏 : 《C++干货基地》《粉丝福利》

⛺️生活的理想,就是为了理想的生活!


引言

在训练神经网络时,我们通常需要计算损失函数关于模型参数的梯度,以便通过梯度下降等优化算法更新参数。然而,在评估阶段,我们只关心模型的输出,而不需要更新参数。在这种情况下,使用 with torch.no_grad(): 上下文管理器可以有效地告诉 PyTorch 不要计算或存储梯度,从而节省计算资源,加快评估速度。

文章目录

with torch.no_grad() 的原理

with torch.no_grad() 是一个上下文管理器,它会在进入该上下文时自动将模型设置为"评估模式",并在此期间禁用梯度计算。这意味着在此上下文中,所有计算得出的张量都不会跟踪它们的计算历史,从而不会计算梯度。当退出该上下文时,模型会恢复到之前的模式(通常是"训练模式")。

使用场景

1. 模型评估

在训练过程中,我们经常需要在验证集或测试集上评估模型的性能。这时,我们使用 with torch.no_grad(): 来确保在评估过程中不会计算梯度,从而节省计算资源。

python 复制代码
model.eval()  # 将模型设置为评估模式
with torch.no_grad():
    for data, target in test_loader:
        output = model(data)
        loss = criterion(output, target)
        test_loss += loss.item()
        _, predicted = torch.max(output, 1)
        total += target.size(0)
        correct += (predicted == target).sum().item()

2. 模型推理

在模型部署到生产环境后,我们通常只需要进行前向传播以获得模型的输出。在这种情况下,我们同样可以使用 with torch.no_grad(): 来提高推理速度。

python 复制代码
with torch.no_grad():
    output = model(input_data)

注意事项

  • with torch.no_grad() 只影响它内部的代码块。退出该上下文后,模型会恢复到之前的状态。
  • 如果在训练过程中需要频繁地在训练和评估模式之间切换,可以考虑使用模型对象的 eval()train() 方法,这两个方法会分别将模型设置为评估模式和训练模式。

结论

with torch.no_grad(): 是 PyTorch 中一个非常有用的工具,它可以帮助我们在不需要计算梯度的场景中节省计算资源,加快模型评估和推理的速度。通过正确使用这个上下文管理器,我们可以更高效地开发和部署深度学习模型。

相关推荐
程途拾光1581 分钟前
算法公平性:消除偏见与歧视的技术探索
大数据·人工智能·算法
Yaozh、2 分钟前
【人工智能中的“智能”是如何实现的】从逻辑回归到神经网络(自用笔记整理)
人工智能·笔记·深度学习·神经网络·机器学习·逻辑回归
刘一说2 分钟前
Java中基于属性的访问控制(ABAC):实现动态、上下文感知的权限管理
java·网络·python
一晌小贪欢3 分钟前
Python 操作 Excel 高阶技巧:用 openpyxl 玩转循环与 Decimal 精度控制
开发语言·python·excel·openpyxl·python办公·python读取excel
北京耐用通信3 分钟前
电子制造行业:耐达讯自动化Profinet转DeviceNet网关助力工业相机高效互联
人工智能·数码相机·物联网·网络协议·自动化·信息与通信
愚公搬代码3 分钟前
【愚公系列】《AI短视频创作一本通》010-AI 短视频分镜头设计(分镜头设计的基本流程)
人工智能·音视频
陈天伟教授5 分钟前
人工智能应用-机器听觉:5. 参数合成法
人工智能·语音识别
铁蛋AI编程实战6 分钟前
Falcon-H1-Tiny 微型 LLM 部署指南:100M 参数也能做复杂推理,树莓派 / 手机都能跑
java·人工智能·python·智能手机
资深数据库专家6 分钟前
EBS 中出现的“销售退货单库存已回冲,但生产成本未变化”的问题
人工智能·经验分享·oracle·微信公众平台·新浪微博
lichenyang45312 分钟前
Node.js AI 开发入门 - 完整学习笔记
人工智能·学习·node.js