模板匹配matchTemplate

定义 :模板匹配是在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最高的区域选择为最终的结果。
原理 :将模板块每次移动一个像素(从左往右,从上往下),在每一个位置,都计算与模板图像的相似程度。对于每一个位置将计算的相似结果保存在结果矩阵®中。如果输入图像的大小(WxH)且模板图像的大小(wxh),则输出矩阵R的大小为(W-w +1,H-h+1)将R显示为图像。获得图像后,查找最大值所在的位置,那么该位置对应的区域就被认为是最匹配的。对应的区域就是以该点为顶点,长宽和模板图像一样大小的矩阵。
案例

API

python 复制代码
res = cv.matchTemplate(img,template,method)
img:要进行模板匹配的图像
Template:模板
实现模板匹配的算法,主要有method:
1.平方差匹配(cv2.TM_SQDIFF_NORMED):利用模板与图像之间的平方差进行匹配最好的匹配是0,匹配越差,匹配的值越大。
2.相关匹配(cv2.TM_CCORR_NORMED):利用模板与图像间的乘法进行匹配,数值越大表示匹配程度较高,越小表示匹配效果差,
3.利用相关系数匹配(cv2.TM_CCOEFF_NORMED):利用模板与图像间的相关系数匹配,1表示完美的匹配,-1表示最差的匹配。

完成匹配后,使用cv.minMaxLoc()方法查找最大值所在的位置即可。如果使用平方差作为比较方法,则最小值位置是最佳匹配位置。
单个对象匹配

python 复制代码
import cv2 as cv2
img = cv2.imread('11.png')    #(781, 1314, 3)数组
template = cv2.imread('kg.png') #(109, 110, 3)
h, w = template.shape[:2]  ##参照物体宽高
# 匹配模板
res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED) #(673, 1205)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# 计算矩形左边
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
# 画矩形
cv2.rectangle(img, top_left, bottom_right, (0, 255, 0), 5)
#cv.rectangle(img,leftupper,rightdown,color,thickness)
#img:要绘制矩形的图像
#Leftupper, rightdown:矩形的左上角和右下角坐标
#color: 线条的颜色
#Thickness: 线条宽度
# 展示结果
cv2.imshow('img_rgb', img)
cv2.waitKey(0)

多个对象匹配

python 复制代码
import cv2
import numpy as np

# 读取目标图像和模板图像
img = cv2.imread('11.png')
template = cv2.imread('tp.png')

# 获取模板图像的宽度和高度
h, w = template.shape[:2]

# 模板匹配
res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED)

# 设置匹配的阈值,通常在0.8~1.0之间
threshold = 0.75  
loc = np.where(res >= threshold)

# 绘制匹配的矩形框并统计匹配数量
count = 0
for pt in zip(*loc[::-1]):  # 将匹配结果的坐标反转,以便用于cv2.rectangle
    cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), (0, 255, 0), 2)
    count += 1
# 显示结果
cv2.putText(img, f"Found {count} objects", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
#cv.putText(img,text,station, font, fontsize,color,thickness,cv.LINE_AA)
#img: 图像
#text:要写入的文本数据
#station:文本的放置位置
#font:字体
#Fontsize :字体大小
#cv.LINE_AA:避免图像线段锯齿型
cv2.imshow('Detected', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
小王爱学人工智能37 分钟前
OpenCV的阈值处理
人工智能·opencv·计算机视觉
湫兮之风1 小时前
OpenCV: Mat存储方式全解析-单通道、多通道内存布局详解
人工智能·opencv·计算机视觉
点云侠3 小时前
解决Visual Studio 2022编译工程速度慢的问题
开发语言·c++·ide·算法·计算机视觉·visual studio
爆改模型5 小时前
【ICCV2025】计算机视觉|即插即用|ESC:超越Transformer!即插即用ESC模块,显著提升图像超分辨率性能!
人工智能·计算机视觉·transformer
却道天凉_好个秋5 小时前
计算机视觉(十二):人工智能、机器学习与深度学习
人工智能·深度学习·机器学习·计算机视觉
豆浩宇6 小时前
Conda环境隔离和PyCharm配置,完美同时运行PaddlePaddle和PyTorch
人工智能·pytorch·算法·计算机视觉·pycharm·conda·paddlepaddle
北岛三生6 小时前
Camera tuning flow相机调试流程
图像处理·数码相机·测试工具·模块测试
AI人工智能+7 小时前
表格识别技术:通过计算机视觉和OCR,实现非结构化表格向结构化数据的转换,推动数字化转型。
人工智能·计算机视觉·ocr
算法打盹中7 小时前
SimLingo:纯视觉框架下的自动驾驶视觉 - 语言 - 动作融合模型
人工智能·机器学习·计算机视觉·语言模型·自动驾驶
大嘴带你水论文8 小时前
震惊!仅用10张照片就能随意编辑3D人脸?韩国KAIST最新黑科技FFaceNeRF解析!
论文阅读·人工智能·python·科技·计算机视觉·3d·transformer