kafka使用

异步发送数据

bash 复制代码
package com.shf.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
/**
 * 异步发送
 */
public class CustomProducer {
    public static void main(String[] args) {
        // 1. 创建 kafka 生产者的配置对象
        Properties properties = new Properties();

        // 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.1.4:9092");

        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

        // 3. 创建 kafka 生产者对象
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 4. 调用 send 方法,发送消息
        for (int i = 0; i < 5; i++) {
            kafkaProducer.send(new ProducerRecord<>("first", "atguigu " + i));
        }
        // 5. 关闭资源
        kafkaProducer.close();
    }
}

异步回调

bash 复制代码
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * 返回消息的信息
 */
public class CustomProducerCallback {
    public static void main(String[] args) {
        // 1. 创建 kafka 生产者的配置对象
        Properties properties = new Properties();

        // 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.120.20:9092,192.168.120.20:9093,192.168.120.20:9094");

        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

        // 3. 创建 kafka 生产者对象
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 4. 调用 send 方法,发送消息
        for (int i = 0; i < 5; i++) {
            kafkaProducer.send(new ProducerRecord<>("first", "atguigu " + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null) {
                        System.out.println("success");
                        System.out.println("主体:"+recordMetadata.topic());
                        System.out.println("分区:"+recordMetadata.partition());
                    } else {
                        System.out.println("fail");
                    }
                }
            });
        }

        // 5. 关闭资源
        kafkaProducer.close();
    }

}

看原理图,返回参数就是RecordAccumulator中的

同步发送

bash 复制代码
import lombok.SneakyThrows;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

public class CustomProducerSync {
    @SneakyThrows
    public static void main(String[] args) {
        // 1. 创建 kafka 生产者的配置对象
        Properties properties = new Properties();

        // 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.120.20:9092,192.168.120.20:9093,192.168.120.20:9094");

        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

        // 3. 创建 kafka 生产者对象
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 4. 调用 send 方法,发送消息
        for (int i = 0; i < 5; i++) {
            kafkaProducer.send(new ProducerRecord<>("first", "atguigu " + i)).get();
        }

        // 5. 关闭资源
        kafkaProducer.close();
    }

}

原理图如下,保证生产者100%发送消息

分区情况

可以通过如果设置了key,那么分区则会通过对key进行取模得出对应的分区,自定义分区

bash 复制代码
public class MyPartitioner implements Partitioner {

    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        String msgValues = value.toString();

        int partition;

        if (msgValues.contains("shf")) {
            partition = 0;
        } else {
            partition = 1;
        }
        return partition;
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> configs) {

    }
}

docker 创建kafka

bash 复制代码
https://www.cnblogs.com/JcHome/p/16475990.html
相关推荐
学习中的阿陈36 分钟前
Hadoop伪分布式环境配置
大数据·hadoop·分布式
CesareCheung1 小时前
JMeter分布式压力测试
分布式·jmeter·压力测试
thginWalker1 小时前
面试鸭Java八股之Kafka
kafka
失散133 小时前
分布式专题——10.5 ShardingSphere的CosID主键生成框架
java·分布式·架构·分库分表·shadingsphere
winfield8214 小时前
Kafka 线上问题排查完整手册
kafka
Cxzzzzzzzzzz6 小时前
RabbitMQ 在实际开发中的应用场景与实现方案
分布式·rabbitmq
在未来等你7 小时前
Kafka面试精讲 Day 16:生产者性能优化策略
大数据·分布式·面试·kafka·消息队列
王大帅の王同学7 小时前
Thinkphp6接入讯飞星火大模型Spark Lite完全免费的API
大数据·分布式·spark
一氧化二氢.h9 小时前
通俗解释redis高级:redis持久化(RDB持久化、AOF持久化)、redis主从、redis哨兵、redis分片集群
redis·分布式·缓存
爱睡觉的圈圈12 小时前
分布式IP代理集群架构与智能调度系统
分布式·tcp/ip·架构