二元分类逻辑回归python代码实现

python 复制代码
import numpy as np
from math import *


#sigmoid函数
def sigmoid(z):
    return 1/(1+exp(-z))

#计算代价的函数
def get_cost_logistic(X,y,w,b):
    m=X.shape[0]
    cost=0.0
    for i in range(m):
        z_i=np.dot(X[i],w)+b
        f_wb_i=sigmoid(z_i)
        cost+=-y[i]*np.log(f_wb_i)-(1-y[i])*np.log(1-f_wb_i)
    cost=cost/m
    return cost

#计算梯度的函数
def get_gradient(x,y,w,b):
   #获取数据量和特征数量
   m=x.shape[0]
   n=x.shape[1]
   dj_dw=np.zeros((n,))
   dj_db=0
   for i in range(m):
       error=sigmoid(np.dot(x[i,:],w)+b)-y[i]
       dj_db+=error
       for j in range(n):
           dj_dw[j]+=(error*x[i,j])
   dj_db=dj_db/m
   dj_dw=dj_dw/m
   return dj_dw,dj_db

#梯度下降函数
def gradient_descent(x,y,w_in,b_in,alpha,iters):
    w=w_in
    b=b_in
    cost_his=[]
    for i in range(iters):
        dj_dw,dj_db=get_gradient(x,y,w,b)
        w=w-dj_dw*alpha
        b=b-dj_db*alpha
        cost_his.append(get_cost_logistic(x,y,w,b))
        if (i)%(iters/10)==0:
            print(f'iteration:{i},cost:{cost_his[i]},w:{w},b:{b}')
    print(f'final w:{w},b:{b}')
    return w,b,cost_his
相关推荐
潮汐退涨月冷风霜23 分钟前
数字图像处理(1)OpenCV C++ & Opencv Python显示图像和视频
c++·python·opencv
酷飞飞7 小时前
Python网络与多任务编程:TCP/UDP实战指南
网络·python·tcp/ip
数字化顾问8 小时前
Python:OpenCV 教程——从传统视觉到深度学习:YOLOv8 与 OpenCV DNN 模块协同实现工业缺陷检测
python
学生信的大叔9 小时前
【Python自动化】Ubuntu24.04配置Selenium并测试
python·selenium·自动化
诗句藏于尽头10 小时前
Django模型与数据库表映射的两种方式
数据库·python·django
智数研析社10 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
扯淡的闲人10 小时前
多语言编码Agent解决方案(5)-IntelliJ插件实现
开发语言·python
moxiaoran575310 小时前
Flask学习笔记(一)
后端·python·flask
秋氘渔11 小时前
迭代器和生成器的区别与联系
python·迭代器·生成器·可迭代对象
Gu_shiwww11 小时前
数据结构8——双向链表
c语言·数据结构·python·链表·小白初步