时序预测 | 基于WTC+transformer时间序列组合预测模型(pytorch)

目录

效果一览

基本介绍

WTC+transformer时间序列组合预测模型

WTC,transformer

创新点,超级新。先发先得,高精度代码。

预测主模型transformer也可以改其他WTC-former系列,比如WTC-informer/autoformer等等,代码还也可以继续缝合创新点,优化方法。需要的也可以发要求给我定制。

WTC卷积机制是2024年7月15日发表的卷积结构(热乎的超级新,新的不能在新了)。人们尝试通过增加卷积神经网络Q(CNN)内核的大小来模拟视觉变换器(VITs)自注意力模块的全局感受野。然而,这种方法很快就遇到了上限,并在达到全局感受野之前就已饱和。

原来WTC卷积是用来做图像的,本代码尝试将它转移用到时间序列中,二维转一维,利用WTC卷积进行特征提取,将提取的结果放入transformer进行预测,预测结果非常不错!接近98%的精度,证实了可行性。

python代码

pytorch架构

适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。

1.多变量输入,单变量输出

2.多时间步预测,单时间步预测

3.R方,MAE,MSE MAPE对比图,误差图(缺少的可自行添加)

4.将结果保存下来供后续处理

5.代码自带数据,一键运行,csv,xlsx文件读取数据,也可以替换自己数据集很简单。

程序设计

  • 完整程序和数据获取方式:私信博主回复时序预测 | 基于WTC+transformer时间序列组合预测模型(pytorch)

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
拾贰_C3 分钟前
【Anaconda | Python | pytorch】sklearn scikit-learn 报错:
pytorch·python·sklearn
Mr.Lee jack31 分钟前
【torch.compile】PyTorch Dynamo 和 Inductor 编译流程
人工智能·pytorch·深度学习
小张帅三代41 分钟前
华为昇腾服务器ubuntu Anaconda安装PyTorch npu 版本 步骤
服务器·pytorch·ubuntu
十铭忘1 小时前
SAM2跟踪的理解11——mask decoder
人工智能·深度学习
撬动未来的支点1 小时前
【AI邪修·神经网络】神经网络基础—代码分析—手写数字识别
pytorch
idkmn_1 小时前
Daily AI 20251219 (PyTorch基础回顾3)
人工智能·pytorch·python·深度学习·神经网络
最晚的py1 小时前
深度学习简介
深度学习
free-elcmacom1 小时前
机器学习高阶教程<7>Transformer原理全景解读:从“序列困境”到“注意力革命”
人工智能·python·机器学习·transformer
baby_hua2 小时前
20251011_Pytorch深度学习(快速预览)
人工智能·pytorch·深度学习
natide2 小时前
词汇/表达差异-1-编辑距离-莱文斯坦距离-Levenshtein
人工智能·深度学习·自然语言处理·知识图谱