时序预测 | 基于WTC+transformer时间序列组合预测模型(pytorch)

目录

效果一览

基本介绍

WTC+transformer时间序列组合预测模型

WTC,transformer

创新点,超级新。先发先得,高精度代码。

预测主模型transformer也可以改其他WTC-former系列,比如WTC-informer/autoformer等等,代码还也可以继续缝合创新点,优化方法。需要的也可以发要求给我定制。

WTC卷积机制是2024年7月15日发表的卷积结构(热乎的超级新,新的不能在新了)。人们尝试通过增加卷积神经网络Q(CNN)内核的大小来模拟视觉变换器(VITs)自注意力模块的全局感受野。然而,这种方法很快就遇到了上限,并在达到全局感受野之前就已饱和。

原来WTC卷积是用来做图像的,本代码尝试将它转移用到时间序列中,二维转一维,利用WTC卷积进行特征提取,将提取的结果放入transformer进行预测,预测结果非常不错!接近98%的精度,证实了可行性。

python代码

pytorch架构

适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。

1.多变量输入,单变量输出

2.多时间步预测,单时间步预测

3.R方,MAE,MSE MAPE对比图,误差图(缺少的可自行添加)

4.将结果保存下来供后续处理

5.代码自带数据,一键运行,csv,xlsx文件读取数据,也可以替换自己数据集很简单。

程序设计

  • 完整程序和数据获取方式:私信博主回复时序预测 | 基于WTC+transformer时间序列组合预测模型(pytorch)

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
碎碎思3 分钟前
在 FPGA 上实现并行脉冲神经网络(Spiking Neural Net)
人工智能·深度学习·神经网络·机器学习·fpga开发
Terrence Shen15 分钟前
【CUDA编程系列】之01
c++·人工智能·深度学习·机器学习
AI即插即用17 分钟前
超分辨率重建 | CVPR 2024 DarkIR:轻量级低光照图像增强与去模糊模型(代码实践)
图像处理·人工智能·深度学习·神经网络·计算机视觉·超分辨率重建
创作者mateo23 分钟前
PyTorch 入门学习笔记(基础篇)一
pytorch·笔记·学习
OpenBayes25 分钟前
HY-MT1.5-1.8B 支持多语言神经机器翻译;Med-Banana-50K 提供医学影像编辑基准数据
人工智能·深度学习·自然语言处理·数据集·机器翻译·图像生成
victory043133 分钟前
pytorch 矩阵乘法和实际存储形状的差异
人工智能·pytorch·矩阵
次元工程师!1 小时前
Ubuntu部署DDSP-SVC 6.3音色克隆大模型和使用(基于SVC Fusion整合包)
人工智能·深度学习·ai·svc·ddsp·音色克隆
haiyu_y1 小时前
Day 57 经典时序模型(1)——差分、ACF/PACF 与 AR/MA/ARMA
人工智能·深度学习·ar
duyinbi75171 小时前
【深度学习】使用YOLOv8-MFMMAFPN进行泡沫检测的完整实现
人工智能·深度学习·yolo
EchoL、1 小时前
指定GPU设备
pytorch·笔记