时序预测 | 基于WTC+transformer时间序列组合预测模型(pytorch)

目录

效果一览

基本介绍

WTC+transformer时间序列组合预测模型

WTC,transformer

创新点,超级新。先发先得,高精度代码。

预测主模型transformer也可以改其他WTC-former系列,比如WTC-informer/autoformer等等,代码还也可以继续缝合创新点,优化方法。需要的也可以发要求给我定制。

WTC卷积机制是2024年7月15日发表的卷积结构(热乎的超级新,新的不能在新了)。人们尝试通过增加卷积神经网络Q(CNN)内核的大小来模拟视觉变换器(VITs)自注意力模块的全局感受野。然而,这种方法很快就遇到了上限,并在达到全局感受野之前就已饱和。

原来WTC卷积是用来做图像的,本代码尝试将它转移用到时间序列中,二维转一维,利用WTC卷积进行特征提取,将提取的结果放入transformer进行预测,预测结果非常不错!接近98%的精度,证实了可行性。

python代码

pytorch架构

适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。

1.多变量输入,单变量输出

2.多时间步预测,单时间步预测

3.R方,MAE,MSE MAPE对比图,误差图(缺少的可自行添加)

4.将结果保存下来供后续处理

5.代码自带数据,一键运行,csv,xlsx文件读取数据,也可以替换自己数据集很简单。

程序设计

  • 完整程序和数据获取方式:私信博主回复时序预测 | 基于WTC+transformer时间序列组合预测模型(pytorch)

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
Moniane8 小时前
Python爬虫入门:从零到数据采集
深度学习
lingchen19068 小时前
卷积神经网络中的卷积运算原理
深度学习·计算机视觉·cnn
N0nename9 小时前
TR3--Transformer之pytorch复现
人工智能·pytorch·python
MYX_30910 小时前
第七章 完整的模型训练
pytorch·python·深度学习·学习
渡我白衣10 小时前
深度学习进阶(八)——AI 操作系统的雏形:AgentOS、Devin 与多智能体协作
人工智能·深度学习
CLubiy11 小时前
【研究生随笔】Pytorch中的线性代数
pytorch·python·深度学习·线性代数·机器学习
材料科学研究11 小时前
深度学习物理神经网络(PINN)!
python·深度学习·神经网络·pinn
学不会就看11 小时前
PyTorch 张量学习
人工智能·pytorch·学习
兰文彬11 小时前
Pytorch环境安装指南与建议
人工智能·pytorch·python
渡我白衣11 小时前
深度学习进阶(七)——智能体的进化:从 LLM 到 AutoGPT 与 OpenDevin
人工智能·深度学习