pytorch Loss Functions

1. pytorch中loss函数使用方法示例

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable

# 定义网络时需要继承nn.Module并实现它的forward方法,将网络中具有可学习参数的层放在构造函数__init__中
# 不具有可学习参数的层(如ReLu)既可以放在构造函数中也可以不放

# torch.nn.MaxPool2d和torch.nn.functional.max_pool2d,在pytorch构建模型中,都可以作为最大池化层的引入,但前者为类模块,后者为函数,在使用上存在不同。
# torch.nn.functional.max_pool2d是函数,可以直接调用;torch.nn.MaxPool2d是类模块,要先实例化,再调用其函数。
# torch.nn中其它模块跟torch.nn.functional中其它对应的函数也是类似的用法。
class myNet(torch.nn.Module):
    def __init__(self):
        super(myNet, self).__init__()

        self.conv1 = torch.nn.Conv2d(1,6,5)
        self.conv2 = torch.nn.Conv2d(6,16,5)

        self.fc1 = torch.nn.Linear(16*5*5,120)
        self.fc2 = torch.nn.Linear(120, 84)
        self.fc3 = torch.nn.Linear(84, 10)

        self.pooling = torch.nn.MaxPool2d(2)
        self.activate = torch.nn.ReLU()

    def forward(self, x):
        x = self.pooling(self.activate(self.conv1(x)))
        x = self.pooling(self.activate(self.conv2(x)))
        x = x.view(x.size()[0], -1)
        x = self.activate(self.fc1(x))
        x = self.activate(self.fc2(x))
        x = self.fc3(x)

        return x

input = Variable(torch.randn(1,1,32,32))
net = myNet()          # 创建myNet()对象
output = net(input)    # 调用myNet()对象的forward()方法,有点类似C++中的operator()()
target = Variable(torch.arange(0, 10))
citerion = torch.nn.MSELoss()                    # 创建MSELoss()对象
loss = citerion(output.float(), target.float())  # 调用loss函数
print(loss)

print('*'*30)

net.zero_grad()   # 把net中所有可学习参数的梯度清零
print(net.conv1.bias.grad)
loss.backward()
print(net.conv1.bias.grad)

输出结果:

bash 复制代码
tensor(28.6363, grad_fn=<MseLossBackward0>)
******************************
None
tensor([ 0.1782, -0.0815, -0.0902, -0.0140,  0.0267,  0.0015])

2. pytorch官方支持的loss

https://pytorch.org/docs/stable/nn.html#loss-functions

相关推荐
AI视觉网奇37 分钟前
json 可视化 2025 coco json
python·1024程序员节
mit6.8241 小时前
[nanoGPT] ChatGPT 的 LLM 的全栈实现 | 快速上手
python
DKunYu1 小时前
2.1线性回归
pytorch·python·深度学习·1024程序员节
大飞记Python1 小时前
实战分享:一键自动化下载指定版本的Chrome及Chromedriver(附Python源码)
chrome·python·自动化
程序员杰哥2 小时前
如何使用Postman做接口自动化测试及完美的可视化报告?
自动化测试·软件测试·python·测试工具·jenkins·postman·1024程序员节
老歌老听老掉牙3 小时前
参数曲线切向量与叉乘向量的精确计算与分析
python·sympy·1024程序员节
Cherry Zack3 小时前
FastAPI 入门指南 :基础概念与核心特性
开发语言·python·fastapi·1024程序员节
言德斐4 小时前
Python Web框架深度对比:Django vs Flask vs FastAPI(含优缺点与选型策略)
前端·python·django
开心-开心急了4 小时前
Flask入门教程——李辉 第5章: 数据库 关键知识梳理
笔记·后端·python·flask·1024程序员节
CodeCraft Studio5 小时前
国产化Excel开发组件Spire.XLS教程:在Python中将Pandas DataFrame导出到Excel的详细教程
python·excel·pandas