pytorch利用简单CNN实现葡萄病虫害图片识别

1 前言

之前我开发了一个葡萄病虫害的可视化系统,最近就想给这个系统增加2个功能,一个是对接一个AI助手,可以进行葡萄病虫害的咨询,直接对接千问大模型,这个在之前的博文里已经介绍过对接方法了,第二个是做一个根据图片识别病虫害(分类)的功能。

2 实现思路

实现思路是想通过pytorch做一个CNN模型的训练,然后根据给出的图片进行类型的预测。

3 数据集

我没有数据集,仅有的一些图片是之前委托我做程序的bro给的,所以我们训练的时候图片并不多,不过这个没关系,数据集可以后期扩充,目前先实现功能部分

4 安装依赖

该功能由python语言实现,使用pip 安装如下依赖

torch
torchvision
matplotlib

5 数据位置

数据类似这样去组织,一种类型建一个文件夹,然后同一类型的图片放一起。

6 训练模型

python 复制代码
import os
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((128, 128)),  # 调整图片大小
    transforms.ToTensor(),            # 转换为 Tensor
])

# 加载数据集
data_dir = 'dataset'
dataset = datasets.ImageFolder(root=data_dir, transform=transform)
data_loader = DataLoader(dataset, batch_size=8, shuffle=True)

# 获取类别标签
class_names = dataset.classes
num_classes = len(class_names)

# 构建简单的 CNN 模型
class SimpleCNN(nn.Module):
    def __init__(self, num_classes):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.fc1 = nn.Linear(32 * 32 * 32, 128)  # 128 = (128/2)*(128/2)*(32/2)*(32/2)
        self.fc2 = nn.Linear(128, num_classes)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 32 * 32 * 32)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型
model = SimpleCNN(num_classes)

# 训练配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(torch.cuda.is_available())
print(f'Using device: {device}')

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

# 训练循环
num_epochs = 10

for epoch in range(num_epochs):
    running_loss = 0.0
    for images, labels in data_loader:
        images, labels = images.to(device), labels.to(device)

        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

    print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {running_loss / len(data_loader):.4f}")

print("Training finished.")

# 保存模型
torch.save(model.state_dict(), 'plant_disease_model.pth')

执行代码之后得到模型文件:

7 预测模型

然后我们随便去找些病虫害图片,来做预测

python 复制代码
import torch
from torchvision import transforms
from PIL import Image
import os
import torch.nn as nn
import torch.nn.functional as F

# 定义简单的 CNN 模型结构
class SimpleCNN(nn.Module):
    def __init__(self, num_classes):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.fc1 = nn.Linear(32 * 32 * 32, 128)
        self.fc2 = nn.Linear(128, num_classes)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 32 * 32 * 32)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 预测函数
def predict(image_path, model, class_names):
    # 定义图像预处理
    transform = transforms.Compose([
        transforms.Resize((128, 128)),  # 统一大小
        transforms.ToTensor(),
    ])

    # 加载和预处理图像
    image = Image.open(image_path)
    image = transform(image).unsqueeze(0)  # 增加批次维度

    # 将图像输入模型进行预测
    model.eval()  # 设置模型为评估模式
    with torch.no_grad():
        outputs = model(image)
        _, predicted = torch.max(outputs, 1)

    # 返回预测的类别
    return class_names[predicted.item()]

if __name__ == "__main__":
    # 加载训练好的模型
    num_classes = 2  # 根据你的数据集类别数量修改
    model = SimpleCNN(num_classes)
    model.load_state_dict(torch.load('plant_disease_model.pth'))
    model.eval()

    # 类别名称(根据你的数据集修改)
    class_names = ['disease1', 'disease2']  # 替换为实际类别名称

    # 测试预测
    test_image_path = '1.jpg'  # 替换为测试图像的路径
    predicted_class = predict(test_image_path, model, class_names)
    print(f'Predicted class: {predicted_class}')

8 结果

给出的图片和图片预测结果如下:

相关推荐
陈鋆20 分钟前
智慧城市初探与解决方案
人工智能·智慧城市
qdprobot21 分钟前
ESP32桌面天气摆件加文心一言AI大模型对话Mixly图形化编程STEAM创客教育
网络·人工智能·百度·文心一言·arduino
QQ395753323721 分钟前
金融量化交易模型的突破与前景分析
人工智能·金融
QQ395753323722 分钟前
金融量化交易:技术突破与模型优化
人工智能·金融
The_Ticker34 分钟前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
Elastic 中国社区官方博客40 分钟前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
jwolf241 分钟前
摸一下elasticsearch8的AI能力:语义搜索/vector向量搜索案例
人工智能·搜索引擎
有Li1 小时前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉
新加坡内哥谈技术1 小时前
Mistral推出“Le Chat”,对标ChatGPT
人工智能·chatgpt
GOTXX1 小时前
基于Opencv的图像处理软件
图像处理·人工智能·深度学习·opencv·卷积神经网络