1 前言
之前我开发了一个葡萄病虫害的可视化系统,最近就想给这个系统增加2个功能,一个是对接一个AI助手,可以进行葡萄病虫害的咨询,直接对接千问大模型,这个在之前的博文里已经介绍过对接方法了,第二个是做一个根据图片识别病虫害(分类)的功能。
2 实现思路
实现思路是想通过pytorch做一个CNN模型的训练,然后根据给出的图片进行类型的预测。
3 数据集
我没有数据集,仅有的一些图片是之前委托我做程序的bro给的,所以我们训练的时候图片并不多,不过这个没关系,数据集可以后期扩充,目前先实现功能部分
4 安装依赖
该功能由python语言实现,使用pip 安装如下依赖
torch
torchvision
matplotlib
5 数据位置
数据类似这样去组织,一种类型建一个文件夹,然后同一类型的图片放一起。
6 训练模型
python
import os
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
# 数据预处理
transform = transforms.Compose([
transforms.Resize((128, 128)), # 调整图片大小
transforms.ToTensor(), # 转换为 Tensor
])
# 加载数据集
data_dir = 'dataset'
dataset = datasets.ImageFolder(root=data_dir, transform=transform)
data_loader = DataLoader(dataset, batch_size=8, shuffle=True)
# 获取类别标签
class_names = dataset.classes
num_classes = len(class_names)
# 构建简单的 CNN 模型
class SimpleCNN(nn.Module):
def __init__(self, num_classes):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(32 * 32 * 32, 128) # 128 = (128/2)*(128/2)*(32/2)*(32/2)
self.fc2 = nn.Linear(128, num_classes)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 32 * 32 * 32)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 实例化模型
model = SimpleCNN(num_classes)
# 训练配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(torch.cuda.is_available())
print(f'Using device: {device}')
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练循环
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for images, labels in data_loader:
images, labels = images.to(device), labels.to(device)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {running_loss / len(data_loader):.4f}")
print("Training finished.")
# 保存模型
torch.save(model.state_dict(), 'plant_disease_model.pth')
执行代码之后得到模型文件:
7 预测模型
然后我们随便去找些病虫害图片,来做预测
python
import torch
from torchvision import transforms
from PIL import Image
import os
import torch.nn as nn
import torch.nn.functional as F
# 定义简单的 CNN 模型结构
class SimpleCNN(nn.Module):
def __init__(self, num_classes):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(32 * 32 * 32, 128)
self.fc2 = nn.Linear(128, num_classes)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 32 * 32 * 32)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 预测函数
def predict(image_path, model, class_names):
# 定义图像预处理
transform = transforms.Compose([
transforms.Resize((128, 128)), # 统一大小
transforms.ToTensor(),
])
# 加载和预处理图像
image = Image.open(image_path)
image = transform(image).unsqueeze(0) # 增加批次维度
# 将图像输入模型进行预测
model.eval() # 设置模型为评估模式
with torch.no_grad():
outputs = model(image)
_, predicted = torch.max(outputs, 1)
# 返回预测的类别
return class_names[predicted.item()]
if __name__ == "__main__":
# 加载训练好的模型
num_classes = 2 # 根据你的数据集类别数量修改
model = SimpleCNN(num_classes)
model.load_state_dict(torch.load('plant_disease_model.pth'))
model.eval()
# 类别名称(根据你的数据集修改)
class_names = ['disease1', 'disease2'] # 替换为实际类别名称
# 测试预测
test_image_path = '1.jpg' # 替换为测试图像的路径
predicted_class = predict(test_image_path, model, class_names)
print(f'Predicted class: {predicted_class}')
8 结果
给出的图片和图片预测结果如下: