yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制之(图像增强是按梯度变化优化)

接上个博客:

https://blog.csdn.net/weixin_43269994/article/details/141753412

优化如下函数:

def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    base_filename, image_ext = os.path.splitext(image_filename)

    # 构建原始文件路径
    file_paths = {
        "images": os.path.join(base_folder, "images", image_filename),
    }

    if process_annotations:
        file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")
    if process_labels:
        file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")

    # 创建输出文件夹
    output_folders = create_output_folders(base_folder)

    # 复制原始图像
    copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)

    if process_annotations:
        copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)
    if process_labels:
        copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)

    # 生成按梯度变化的增益值
    vgain_start, vgain_end = vgain_range
    vgain_step = (vgain_end - vgain_start) / num_augmentations

    for i in range(1, num_augmentations + 1):
        vgain = vgain_start + i * vgain_step
        brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)

        filename_suffix = f"_enhanced_{i}"
        output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)
        cv2.imwrite(output_image_path, brightened_img)
        print(f"Saved: {output_image_path}")

        if process_annotations:
            copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)
            print(f"Copied annotations: {output_image_path}")

        if process_labels:
            copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)
            print(f"Copied labels: {output_image_path}")

    print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")

这个函数 augment_and_copy_files 的目的是处理和增强图像,并将处理后的图像及其相关的注释和标签文件复制到指定的输出文件夹中。具体来说,它对图像进行亮度调整,并生成多个增强版本,同时可选择处理和复制对应的注释和标签文件。以下是详细解释:

  • base_folder: 原始数据的基路径。它包含了 images、annotations 和 labels 文件夹。
  • image_filename: 要处理的图像文件名。
  • num_augmentations: 生成的增强图像数量。
  • vgain_range: 亮度增益的范围,包含两个值,起始增益和结束增益。
  • process_labels: 布尔值,指示是否处理标签文件。
  • process_annotations: 布尔值,指示是否处理注释文件。

总体代码:

import cv2
import numpy as np
import os
import shutil


def adjust_brightness(im, vgain):
    hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)
    hue, sat, val = cv2.split(hsv)
    val = np.clip(val * vgain, 0, 255).astype(np.uint8)
    enhanced_hsv = cv2.merge((hue, sat, val))
    brightened_img = cv2.cvtColor(enhanced_hsv, cv2.COLOR_HSV2BGR)
    return brightened_img


def create_output_folders(base_folder):
    new_base_folder = os.path.join(os.path.dirname(base_folder), "augmented_data")
    output_folders = {
        "images": os.path.join(new_base_folder, "images"),
        "annotations": os.path.join(new_base_folder, "annotations"),
        "labels": os.path.join(new_base_folder, "labels")
    }
    for folder in output_folders.values():
        os.makedirs(folder, exist_ok=True)
    return output_folders


def copy_file(src_path, dst_folder, filename_suffix, preserve_ext=True):
    base_filename, ext = os.path.splitext(os.path.basename(src_path))
    if preserve_ext:
        new_filename = f"{base_filename}{filename_suffix}{ext}"
    else:
        new_filename = f"{base_filename}{filename_suffix}"
    dst_path = os.path.join(dst_folder, new_filename)
    shutil.copy(src_path, dst_path)
    return dst_path


def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    base_filename, image_ext = os.path.splitext(image_filename)

    # 构建原始文件路径
    file_paths = {
        "images": os.path.join(base_folder, "images", image_filename),
    }

    if process_annotations:
        file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")
    if process_labels:
        file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")

    # 创建输出文件夹
    output_folders = create_output_folders(base_folder)

    # 复制原始图像
    copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)

    if process_annotations:
        copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)
    if process_labels:
        copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)

    # 生成按梯度变化的增益值
    vgain_start, vgain_end = vgain_range
    vgain_step = (vgain_end - vgain_start) / num_augmentations

    for i in range(1, num_augmentations + 1):
        vgain = vgain_start + i * vgain_step
        brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)

        filename_suffix = f"_enhanced_{i}"
        output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)
        cv2.imwrite(output_image_path, brightened_img)
        print(f"Saved: {output_image_path}")

        if process_annotations:
            copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)
            print(f"Copied annotations: {output_image_path}")

        if process_labels:
            copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)
            print(f"Copied labels: {output_image_path}")

    print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")


def process_all_images_in_folder(base_folder, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    images_folder = os.path.join(base_folder, "images")
    for image_filename in os.listdir(images_folder):
        if image_filename.lower().endswith(('.bmp', '.jpg', '.jpeg', '.png')):
            augment_and_copy_files(base_folder, image_filename, num_augmentations, vgain_range, process_labels, process_annotations)


# 使用示例
base_folder = r"C:\Users\linds\Desktop\fsdownload\upgrade_algo_so\data_res_2024_08_31_16_38\train"
process_all_images_in_folder(base_folder, num_augmentations=10, vgain_range=(1, 3), process_labels=True, process_annotations=False)
相关推荐
AI视觉网奇5 分钟前
Detected at node ‘truediv‘ defined at (most recent call last): Node: ‘truediv‘
人工智能·python·tensorflow
GuYue.bing27 分钟前
网络下载ts流媒体
开发语言·python
牛顿喜欢吃苹果40 分钟前
linux创建虚拟串口
python
-Mr_X-1 小时前
FFmpeg在python里推流被处理过的视频流
python·ffmpeg
一个不秃头的 程序员1 小时前
代码加入SFTP JAVA ---(小白篇3)
java·python·github
susu10830189111 小时前
python实现根据搜索关键词爬取某宝商品信息
爬虫·python
喜欢猪猪2 小时前
Java技术专家视角解读:SQL优化与批处理在大数据处理中的应用及原理
android·python·adb
海绵波波1072 小时前
flask后端开发(1):第一个Flask项目
后端·python·flask
林的快手2 小时前
209.长度最小的子数组
java·数据结构·数据库·python·算法·leetcode
从以前2 小时前
准备考试:解决大学入学考试问题
数据结构·python·算法