yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制之(图像增强是按梯度变化优化)

接上个博客:

复制代码
https://blog.csdn.net/weixin_43269994/article/details/141753412

优化如下函数:

复制代码
def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    base_filename, image_ext = os.path.splitext(image_filename)

    # 构建原始文件路径
    file_paths = {
        "images": os.path.join(base_folder, "images", image_filename),
    }

    if process_annotations:
        file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")
    if process_labels:
        file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")

    # 创建输出文件夹
    output_folders = create_output_folders(base_folder)

    # 复制原始图像
    copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)

    if process_annotations:
        copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)
    if process_labels:
        copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)

    # 生成按梯度变化的增益值
    vgain_start, vgain_end = vgain_range
    vgain_step = (vgain_end - vgain_start) / num_augmentations

    for i in range(1, num_augmentations + 1):
        vgain = vgain_start + i * vgain_step
        brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)

        filename_suffix = f"_enhanced_{i}"
        output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)
        cv2.imwrite(output_image_path, brightened_img)
        print(f"Saved: {output_image_path}")

        if process_annotations:
            copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)
            print(f"Copied annotations: {output_image_path}")

        if process_labels:
            copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)
            print(f"Copied labels: {output_image_path}")

    print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")

这个函数 augment_and_copy_files 的目的是处理和增强图像,并将处理后的图像及其相关的注释和标签文件复制到指定的输出文件夹中。具体来说,它对图像进行亮度调整,并生成多个增强版本,同时可选择处理和复制对应的注释和标签文件。以下是详细解释:

  • base_folder: 原始数据的基路径。它包含了 images、annotations 和 labels 文件夹。
  • image_filename: 要处理的图像文件名。
  • num_augmentations: 生成的增强图像数量。
  • vgain_range: 亮度增益的范围,包含两个值,起始增益和结束增益。
  • process_labels: 布尔值,指示是否处理标签文件。
  • process_annotations: 布尔值,指示是否处理注释文件。

总体代码:

复制代码
import cv2
import numpy as np
import os
import shutil


def adjust_brightness(im, vgain):
    hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)
    hue, sat, val = cv2.split(hsv)
    val = np.clip(val * vgain, 0, 255).astype(np.uint8)
    enhanced_hsv = cv2.merge((hue, sat, val))
    brightened_img = cv2.cvtColor(enhanced_hsv, cv2.COLOR_HSV2BGR)
    return brightened_img


def create_output_folders(base_folder):
    new_base_folder = os.path.join(os.path.dirname(base_folder), "augmented_data")
    output_folders = {
        "images": os.path.join(new_base_folder, "images"),
        "annotations": os.path.join(new_base_folder, "annotations"),
        "labels": os.path.join(new_base_folder, "labels")
    }
    for folder in output_folders.values():
        os.makedirs(folder, exist_ok=True)
    return output_folders


def copy_file(src_path, dst_folder, filename_suffix, preserve_ext=True):
    base_filename, ext = os.path.splitext(os.path.basename(src_path))
    if preserve_ext:
        new_filename = f"{base_filename}{filename_suffix}{ext}"
    else:
        new_filename = f"{base_filename}{filename_suffix}"
    dst_path = os.path.join(dst_folder, new_filename)
    shutil.copy(src_path, dst_path)
    return dst_path


def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    base_filename, image_ext = os.path.splitext(image_filename)

    # 构建原始文件路径
    file_paths = {
        "images": os.path.join(base_folder, "images", image_filename),
    }

    if process_annotations:
        file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")
    if process_labels:
        file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")

    # 创建输出文件夹
    output_folders = create_output_folders(base_folder)

    # 复制原始图像
    copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)

    if process_annotations:
        copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)
    if process_labels:
        copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)

    # 生成按梯度变化的增益值
    vgain_start, vgain_end = vgain_range
    vgain_step = (vgain_end - vgain_start) / num_augmentations

    for i in range(1, num_augmentations + 1):
        vgain = vgain_start + i * vgain_step
        brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)

        filename_suffix = f"_enhanced_{i}"
        output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)
        cv2.imwrite(output_image_path, brightened_img)
        print(f"Saved: {output_image_path}")

        if process_annotations:
            copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)
            print(f"Copied annotations: {output_image_path}")

        if process_labels:
            copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)
            print(f"Copied labels: {output_image_path}")

    print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")


def process_all_images_in_folder(base_folder, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    images_folder = os.path.join(base_folder, "images")
    for image_filename in os.listdir(images_folder):
        if image_filename.lower().endswith(('.bmp', '.jpg', '.jpeg', '.png')):
            augment_and_copy_files(base_folder, image_filename, num_augmentations, vgain_range, process_labels, process_annotations)


# 使用示例
base_folder = r"C:\Users\linds\Desktop\fsdownload\upgrade_algo_so\data_res_2024_08_31_16_38\train"
process_all_images_in_folder(base_folder, num_augmentations=10, vgain_range=(1, 3), process_labels=True, process_annotations=False)
相关推荐
SunnyDays1011几秒前
使用 Python 高效删除 Excel 重复数据(Excel 去重方法详解)
python·删除excel重复行·删除excel重复数据·excel去重·删除excel重复值
再__努力1点2 分钟前
【68】颜色直方图详解与Python实现
开发语言·图像处理·人工智能·python·算法·计算机视觉
Brian Xia4 分钟前
Nano-vLLM 源码分析(一) - 课程大纲
python·ai
猪在黑魔纹里11 分钟前
解决VSCode无法高亮、解析numpy中的部分接口(如pi、deg2rad)
ide·vscode·python·numpy
爱笑的眼睛1120 分钟前
文本分类的范式演进:从统计概率到语言模型提示工程
java·人工智能·python·ai
星川皆无恙25 分钟前
基于知识图谱+深度学习的大数据NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)
大数据·人工智能·python·深度学习·自然语言处理·知识图谱
Tipriest_31 分钟前
旋转矩阵,齐次变换矩阵,欧拉角,四元数等相互转换的常用代码C++ Python
c++·python·矩阵
周杰伦_Jay32 分钟前
【Go/Python/Java】基础语法+核心特性对比
java·python·golang
小鹿学程序37 分钟前
jdk配置完之后java -version还是默认的jdk版本如何更改
java·开发语言·python
Pyeako43 分钟前
Python数据可视化--matplotlib库
python·matplotlib·数据可视化·画图·pylab