yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制之(图像增强是按梯度变化优化)

接上个博客:

复制代码
https://blog.csdn.net/weixin_43269994/article/details/141753412

优化如下函数:

复制代码
def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    base_filename, image_ext = os.path.splitext(image_filename)

    # 构建原始文件路径
    file_paths = {
        "images": os.path.join(base_folder, "images", image_filename),
    }

    if process_annotations:
        file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")
    if process_labels:
        file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")

    # 创建输出文件夹
    output_folders = create_output_folders(base_folder)

    # 复制原始图像
    copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)

    if process_annotations:
        copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)
    if process_labels:
        copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)

    # 生成按梯度变化的增益值
    vgain_start, vgain_end = vgain_range
    vgain_step = (vgain_end - vgain_start) / num_augmentations

    for i in range(1, num_augmentations + 1):
        vgain = vgain_start + i * vgain_step
        brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)

        filename_suffix = f"_enhanced_{i}"
        output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)
        cv2.imwrite(output_image_path, brightened_img)
        print(f"Saved: {output_image_path}")

        if process_annotations:
            copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)
            print(f"Copied annotations: {output_image_path}")

        if process_labels:
            copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)
            print(f"Copied labels: {output_image_path}")

    print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")

这个函数 augment_and_copy_files 的目的是处理和增强图像,并将处理后的图像及其相关的注释和标签文件复制到指定的输出文件夹中。具体来说,它对图像进行亮度调整,并生成多个增强版本,同时可选择处理和复制对应的注释和标签文件。以下是详细解释:

  • base_folder: 原始数据的基路径。它包含了 images、annotations 和 labels 文件夹。
  • image_filename: 要处理的图像文件名。
  • num_augmentations: 生成的增强图像数量。
  • vgain_range: 亮度增益的范围,包含两个值,起始增益和结束增益。
  • process_labels: 布尔值,指示是否处理标签文件。
  • process_annotations: 布尔值,指示是否处理注释文件。

总体代码:

复制代码
import cv2
import numpy as np
import os
import shutil


def adjust_brightness(im, vgain):
    hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)
    hue, sat, val = cv2.split(hsv)
    val = np.clip(val * vgain, 0, 255).astype(np.uint8)
    enhanced_hsv = cv2.merge((hue, sat, val))
    brightened_img = cv2.cvtColor(enhanced_hsv, cv2.COLOR_HSV2BGR)
    return brightened_img


def create_output_folders(base_folder):
    new_base_folder = os.path.join(os.path.dirname(base_folder), "augmented_data")
    output_folders = {
        "images": os.path.join(new_base_folder, "images"),
        "annotations": os.path.join(new_base_folder, "annotations"),
        "labels": os.path.join(new_base_folder, "labels")
    }
    for folder in output_folders.values():
        os.makedirs(folder, exist_ok=True)
    return output_folders


def copy_file(src_path, dst_folder, filename_suffix, preserve_ext=True):
    base_filename, ext = os.path.splitext(os.path.basename(src_path))
    if preserve_ext:
        new_filename = f"{base_filename}{filename_suffix}{ext}"
    else:
        new_filename = f"{base_filename}{filename_suffix}"
    dst_path = os.path.join(dst_folder, new_filename)
    shutil.copy(src_path, dst_path)
    return dst_path


def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    base_filename, image_ext = os.path.splitext(image_filename)

    # 构建原始文件路径
    file_paths = {
        "images": os.path.join(base_folder, "images", image_filename),
    }

    if process_annotations:
        file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")
    if process_labels:
        file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")

    # 创建输出文件夹
    output_folders = create_output_folders(base_folder)

    # 复制原始图像
    copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)

    if process_annotations:
        copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)
    if process_labels:
        copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)

    # 生成按梯度变化的增益值
    vgain_start, vgain_end = vgain_range
    vgain_step = (vgain_end - vgain_start) / num_augmentations

    for i in range(1, num_augmentations + 1):
        vgain = vgain_start + i * vgain_step
        brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)

        filename_suffix = f"_enhanced_{i}"
        output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)
        cv2.imwrite(output_image_path, brightened_img)
        print(f"Saved: {output_image_path}")

        if process_annotations:
            copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)
            print(f"Copied annotations: {output_image_path}")

        if process_labels:
            copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)
            print(f"Copied labels: {output_image_path}")

    print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")


def process_all_images_in_folder(base_folder, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    images_folder = os.path.join(base_folder, "images")
    for image_filename in os.listdir(images_folder):
        if image_filename.lower().endswith(('.bmp', '.jpg', '.jpeg', '.png')):
            augment_and_copy_files(base_folder, image_filename, num_augmentations, vgain_range, process_labels, process_annotations)


# 使用示例
base_folder = r"C:\Users\linds\Desktop\fsdownload\upgrade_algo_so\data_res_2024_08_31_16_38\train"
process_all_images_in_folder(base_folder, num_augmentations=10, vgain_range=(1, 3), process_labels=True, process_annotations=False)
相关推荐
好家伙VCC3 小时前
### WebRTC技术:实时通信的革新与实现####webRTC(Web Real-TimeComm
java·前端·python·webrtc
2501_941333104 小时前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
前端玖耀里4 小时前
如何使用python的boto库和SES发送电子邮件?
python
serve the people4 小时前
python环境搭建 (十二) pydantic和pydantic-settings类型验证与解析
java·网络·python
小天源4 小时前
Error 1053 Error 1067 服务“启动后立即停止” Java / Python 程序无法后台运行 windows nssm注册器下载与报错处理
开发语言·windows·python·nssm·error 1053·error 1067
喵手5 小时前
Python爬虫实战:HTTP缓存系统深度实战 — ETag、Last-Modified与requests-cache完全指南(附SQLite持久化存储)!
爬虫·python·爬虫实战·http缓存·etag·零基础python爬虫教学·requests-cache
喵手5 小时前
Python爬虫实战:容器化与定时调度实战 - Docker + Cron + 日志轮转 + 失败重试完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·容器化·零基础python爬虫教学·csv导出·定时调度
2601_949146535 小时前
Python语音通知接口接入教程:开发者快速集成AI语音API的脚本实现
人工智能·python·语音识别
寻梦csdn6 小时前
pycharm+miniconda兼容问题
ide·python·pycharm·conda
Java面试题总结6 小时前
基于 Java 的 PDF 文本水印实现方案(iText7 示例)
java·python·pdf