为什么深度学习用GPU而不是CPU

首先,我们深度理解一下中央处理器(Central Processing Unit,CPU)的核心。 CPU的每个核心都拥有高时钟频率的运行能力,和高达数MB的三级缓存(L3Cache)。 它们非常适合执行各种指令,具有分支预测器、深层流水线和其他使CPU能够运行各种程序的功能。 然而,这种明显的优势也是它的致命弱点:通用核心的制造成本非常高。 它们需要大量的芯片面积、复杂的支持结构(内存接口、内核之间的缓存逻辑、高速互连等等),而且它们在任何单个任务上的性能都相对较差。 现代笔记本电脑最多有4核,即使是高端服务器也很少超过64核,因为它们的性价比不高。

相比于CPU,GPU由100∼1000个小的处理单元组成(NVIDIA、ATI、ARM和其他芯片供应商之间的细节稍有不同),通常被分成更大的组(NVIDIA称之为warps)。 虽然每个GPU核心都相对较弱,有时甚至以低于1GHz的时钟频率运行,但庞大的核心数量使GPU比CPU快几个数量级。 例如,NVIDIA最近一代的Ampere GPU架构为每个芯片提供了高达312 TFlops的浮点性能,而CPU的浮点性能到目前为止还没有超过1 TFlops。 之所以有如此大的差距,原因其实很简单:首先,功耗往往会随时钟频率呈二次方增长。 对于一个CPU核心,假设它的运行速度比GPU快4倍,但可以使用16个GPU核代替,那么GPU的综合性能就是CPU的16×1/4=4倍。 其次,GPU内核要简单得多,这使得它们更节能。 此外,深度学习中的许多操作需要相对较高的内存带宽,而GPU拥有10倍于CPU的带宽。

相关推荐
test猿23 分钟前
深度学习 - 神经网络的原理
人工智能·深度学习·神经网络
青云交40 分钟前
解锁 DeepSeek 模型高效部署密码:蓝耘平台深度剖析与实战应用
大数据·人工智能·技术融合·deepseek 模型·智能金融监管·deepseek-r1_32b·java 大数据
CareyWYR1 小时前
每周AI论文速递(250203-250207)
人工智能
张3蜂1 小时前
PromptSource官方文档翻译
人工智能·机器人·开源
elecfan20112 小时前
本地化部署AI知识库:基于Ollama+DeepSeek+AnythingLLM保姆级教程
人工智能
幸福右手牵3 小时前
WPS如何接入DeepSeek(通过JS宏调用)
javascript·人工智能·深度学习·wps·deepseek
cchjyq3 小时前
opencv:基于暗通道先验(DCP)的内窥镜图像去雾
java·c++·图像处理·人工智能·opencv·计算机视觉
幸福右手牵3 小时前
WPS如何接入DeepSeek(通过第三方工具)
人工智能·深度学习·wps·deepseek
大数据技术架构4 小时前
构建您的专属AI助手:在钉钉上部署DeepSeek
人工智能·钉钉