缓存分布式一致性问题

缓存一致性问题发生的原因,是在更新数据时数据库和缓存数据的不一致。我们要做到保证缓存的最终一致性。如果数据需要强一致性建议直接查询数据库。

双写模式

双写模式为先写数据库,在写缓存。

进来两个请求,先执行"请求1"的操作写入数据1,这时可能由于各种原因,"请求1"卡顿。这时候我们的"请求2"执行写数据库为2,更新缓存为2。"请求1"卡顿结束继续写缓存为1。现在出现问题,我们的缓存本该为2,现在却是1,出现了脏数据

脏数据问题:

暂时性脏数据 ,但是数据是稳定的,缓存过期后,又能得到最新的正确数据。

保证的是最终一致性

失效模式

写数据库后删除缓存,当有用户查询时缓存为空,更新添加缓存。

"请求1"在写完数据1后删除缓存。"请求2"在写缓存时如果出现比较慢的情况,这是进来"请求3"的查询操作,读取缓存为空,然后读取数据库为1。

这时候执行有一个情况,"请求2"写完数据库,执行删除缓存。"请求3"更新缓存,那么这时候更新缓存数据为1,与数据库中最新的2不一致,出现一致性问题

脏数据问题:

暂时性脏数据 ,但是数据是稳定的,缓存过期后,又能得到最新的正确数据。

缓存数据一致性解决方案

双写模式 或者失效模式都会导致缓存不一致问题的出现。那么怎么处理?

1.如果是用户纬度的数据,并发几率小,可以不用考虑大并发出现的一致性问题,缓存加上过期时间,每隔一段时间触发读的主动更新即可解决

2.如果是菜单、商品介绍等基础数据,可以使用cannal订阅数据库binlog方式进行个性化处理

3.缓存数据+过期时间可以足够解决大部分业务对缓存的要求。

4.通过加锁保证并发读写,可以使用读写锁

总结:

我们能放入缓存的数据就不应该是实时性、一致性要求超高的数据。

不应该过度设计,增加系统的复杂度。过度设计会增加大量的开发工作以及维护工作。

缓存一致性解决-Canal

更新缓存

Canal是阿里开源的中间件,可以模拟成数据库的从服务器,直接订阅数据库的binlog日志 ,然后拿到变化后更新redis

优点:改数据库就可以了,不用关心任何的缓存操作,数据修改完成自动同步更新。

缺点:增加了中间件,需要额外开发。

解决数据异构问题

我们去浏览淘宝京东,每个人推荐的商品都是不一样的,基于爱好进行推荐,可以使用Canal进行操作,简单逻辑:

总结

一致性解决方案:

1.缓存所有数据都要有过期时间,保证数据过期后的下一次查询触发主动更新缓存。

2.读写数据的时候,加上分布式的读写锁(读相当于无锁状态)。

相关推荐
惊讶的猫1 小时前
redis分片集群
数据库·redis·缓存·分片集群·海量数据存储·高并发写
jiunian_cn2 小时前
【Redis】渐进式遍历
数据库·redis·缓存
jiunian_cn3 小时前
【Redis】数据库管理操作
数据库·redis·缓存
程序猿阿伟4 小时前
《分布式追踪Span-业务标识融合:端到端业务可观测手册》
分布式
難釋懷4 小时前
秒杀优化-基于阻塞队列实现秒杀优化
redis·缓存
清水白石0084 小时前
深入解析 LRU 缓存:从 `@lru_cache` 到手动实现的完整指南
java·python·spring·缓存
无尽的沉默5 小时前
Redis下载安装
数据库·redis·缓存
yuanmenghao5 小时前
Linux 性能实战 | 第 10 篇 CPU 缓存与内存访问延迟
linux·服务器·缓存·性能优化·自动驾驶·unix
消失的旧时光-19436 小时前
第十六课实战:分布式锁与限流设计 —— 从原理到可跑 Demo
redis·分布式·缓存
若水不如远方6 小时前
分布式一致性(三):共识的黎明——Quorum 机制与 Basic Paxos
分布式·后端·算法