模型从 HuggingFace 转存到 ModelScope

由于 HuggingFace 网络访问比较慢,国内通常会使用魔搭下载模型,如果魔搭上还没有,需要从 HuggingFace 准存一下,本文将通过 Colab + AliyunPan 的方式下载模型并进行转存。

登录Colab 并运行一下命令

安装依赖包,Huggingface 和云盘

复制代码
# 安装需要的包
!pip install huggingface_hub aligo

下载模型

复制代码
import huggingface_hub as hh

repo_id = "TencentBAC/Conan-embedding-v1"
revision_list = hh.list_repo_refs(repo_id)
ref = revision_list.branches[0].ref
hh.snapshot_download(repo_id=repo_id, revision=ref, local_dir="./download")

登录阿里云盘

复制代码
# 上传阿里云盘,填上token
from aligo import Aligo
ali = Aligo()

# 获取用户信息和获取网盘根目录文件列表
user = ali.get_user()
print(user.user_name, user.nick_name, user.phone)
ll = ali.get_file_list() 

上传目录

复制代码
outpath="/content/download"
remote_folder = ali.get_folder_by_path("model100", create_folder=True)
ali.upload_folder(outpath, remote_folder.file_id)

文件成功上传

上传 ModelScope

在 ModelScope 上启动 Notebook

进入 Notebook 安装依赖

复制代码
!pip install aligo

登录云盘,会出现二维码,扫码登录

复制代码
from aligo import Aligo
ali = Aligo()

下载模型,设置云盘的目录位置,指定目标路径并下载

复制代码
file = ali.get_folder_by_path('model100/download')

ali.download_folder(folder_file_id=file.file_id, local_folder="/tmp")

上传到魔搭,替换为自己的 Token,设置模型 Id 为自己创建的模型的 Id,甚至本地路径。

复制代码
from modelscope.hub.api import HubApi
local_dir = "/tmp/download"
'''
魔搭需要一个配置文件,否则上传失败,这里创建一个空文件
'''
!touch {local_dir+"/configuration.json"}
YOUR_ACCESS_TOKEN = '9ec19501-230a-4749-9909-b093e5466e74'
api = HubApi()
api.login(YOUR_ACCESS_TOKEN)
api.push_model(
    model_id="model1001/Conan",
    model_dir=local_dir
)

修改配置文件内容,model 的配置信息直接从 HuggingFace config.json 文件中拷贝即可。

复制代码
{
    "framework": "pytorch",
    "task": "sentence-embedding",
    "model": {
        "architectures": [
            "BertModel"
        ],
        "attention_probs_dropout_prob": 0.1,
        "classifier_dropout": null,
        "directionality": "bidi",
        "gradient_checkpointing": false,
        "hidden_act": "gelu",
        "hidden_dropout_prob": 0.1,
        "hidden_size": 1024,
        "initializer_range": 0.02,
        "intermediate_size": 4096,
        "layer_norm_eps": 1e-12,
        "max_position_embeddings": 512,
        "model_type": "bert",
        "num_attention_heads": 16,
        "num_hidden_layers": 24,
        "pad_token_id": 0,
        "pooler_fc_size": 768,
        "pooler_num_attention_heads": 12,
        "pooler_num_fc_layers": 3,
        "pooler_size_per_head": 128,
        "pooler_type": "first_token_transform",
        "position_embedding_type": "absolute",
        "torch_dtype": "float32",
        "transformers_version": "4.36.2",
        "type_vocab_size": 2,
        "use_cache": true,
        "vocab_size": 21128
    },
    "pipeline": {
        "type": "sentence-embedding"
    }
}

上传成功后,会进入审核进度,审核很快可以完成。

测试上传的模型

复制代码
from modelscope.models import Model
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

model_id = "model1001/Conan"
pipeline_se = pipeline(Tasks.sentence_embedding,
                       model=model_id,
                       sequence_length=512
                       ) 

# 当输入包含"soure_sentence"与"sentences_to_compare"时,会输出source_sentence中首个句子与sentences_to_compare中每个句子的向量表示,以及source_sentence中首个句子与sentences_to_compare中每个句子的相似度。
inputs = {
        "source_sentence": ["吃完海鲜可以喝牛奶吗?"],
        "sentences_to_compare": [
            "不可以,早晨喝牛奶不科学",
            "吃了海鲜后是不能再喝牛奶的,因为牛奶中含得有维生素C,如果海鲜喝牛奶一起服用会对人体造成一定的伤害",
            "吃海鲜是不能同时喝牛奶吃水果,这个至少间隔6小时以上才可以。",
            "吃海鲜是不可以吃柠檬的因为其中的维生素C会和海鲜中的矿物质形成砷"
        ]
    }

result = pipeline_se(input=inputs)
print (result)

总结

HuggingFace 模型转到 ModelScope 基本上就是直接的文件拷贝,上传前需要将模型配置稍微调整一下。

相关推荐
老顾聊技术2 小时前
老顾深度解析【字节跳动的AI项目DeerFlow】源码之工程结构(六)
llm·agent
亚马逊云开发者2 小时前
在 Amazon Bedrock 中结合 RAG 与 MCP 高效缓解提示词膨胀问题
llm
数据智能老司机2 小时前
MCP 实战——MCP 服务器的身份验证与部署
llm·agent·mcp
数据智能老司机2 小时前
MCP 实战——高级服务器架构
llm·agent·mcp
DevYK14 小时前
企业级 Agent 开发实战(一) LangGraph 快速入门
后端·llm·agent
Ethan.Yuan14 小时前
【深度长文】Anthropic发布Prompt Engineering全新指南
大模型·llm·prompt·提示工程
AI大模型19 小时前
基于 Docker 的 LLaMA-Factory 全流程部署指南
docker·llm·llama
AI大模型20 小时前
强推!大模型学习书籍合集推荐 | (含PDF地址)
程序员·llm·agent
字节跳动安全中心21 小时前
智能体防御 | 一文了解3种系统提示词加固方法
安全·llm
聚客AI1 天前
🧩万亿级Token训练!解密大模型预训练算力黑洞与RLHF对齐革命
人工智能·llm·强化学习