STM32基础篇:RTC × Unix时间戳 × BKP

Unix时间戳

最早是在Unix系统使用的,之后很多由Unix演变而来的系统也都继承了Unix时间戳的规定。目前,Linux、Windows、安卓这些系统,其底层的计时系统都是使用Unix时间戳。

Uinx时间戳(Unix Timestamp)定义为从UTC/GMT 的1970年1月1日0时0分0秒开始所经过的秒数,不考虑闰秒。也就是说时间戳是一个秒计数器,且只记秒,不会向分钟、小时进位。

其年月日小时分钟均通过计算秒得出。

世界上所有时区共用一个时间戳的秒计数器,不同时区通过添加偏移来得到当地时间。如上图所示,相比于伦敦,北京时间偏移了8个小时。


UTC/GMT

GMT格林尼治标准时间,可理解为伦敦时间,是一种以地球自转为基础的时间计量系统。它将地球自转一周的时间间隔等分为24小时,以此确定计时标准。

但GMT是以前的时间标准,因为地球自转一周的时间是不固定的,由于潮汐力、地球活动等原因,地球目前是越转越慢的,因此时间基准也是不固定的(即1秒到底是多长)。

为了时间的定义更标准,科学家又提出来新的计时系统,叫做UTC ,即协调世界时。是一种以原子钟为基础的时间计量系统。它规定铯133原子基态的两个超精细能级间在零磁场下跃迁辐射9192631770周所持续的时间为1秒。

当原子钟计时一天的时间与地球自转一周的时间相差超过0,9秒时,UTC会执行闰秒来保证其计时与地球自转的协调一致。

闰秒:计时标准是恒定不变的,但是地球越转越慢,误差超过0.9秒时,计时系统就多走一秒来等一下地球的自转。


时间戳转换

C语言的time.h模块提供了时间获取和时间戳转换的相关函数,可以方便地进行秒计数器、日期时间和字符串之间的转换。

|---------------------------------------------------------------------------------------------|---------------------|
| 函数 | 作用 |
| time_t time(time_t *seconds) | 获取系统时钟 |
| struct tm *gmtime(const time_t *timer) | 秒计数器转换为日期时间(格林尼治时间) |
| struct tm *localtime(const time_t *timer) | 秒计数器转换为日期时间(当地时间) |
| time_t mktime(struct tm *timeptr) | 日期时间转换为秒计数器(当地时间) |
| char *ctime(const time_t *timer) | 秒计数器转换为字符串(默认格式) |
| char *asctime(const struct tm *timeptr) | 日期时间转换为字符串(默认格式) |
| size_t strftime(char *str, size_t maxsize, const char *format, const struct tm *timeptr) | 日期时间转换为字符串(自定义格式) |

数据类型:

1、秒计数器时间类型:time_t,64位有符号的整型数据,用于存储时间戳中一直自增的秒数。

2、日期时间类型:struct tm,是一个结构体,具体如下:

3、字符串时间类型:char*,就是char类型数据的指针。用来指向一个表示时间的字符串。


BKP简介

BKP备份寄存器,可用于存储用户应用程序数据,当VDD(2.0~3.6V)电源被切断,他们仍然由VBAT(1.8~3.6V)维持供电。当系统在待机模式下被唤醒,或系统复位或电源复位时,他们也不会被复位(除非VBAT掉电)。

用户数据存储容量:

|------|---------|
| 20字节 | 中容量和小容量 |
| 84字节 | 大容量和互联型 |

对于C8T6芯片,为中容量,对应20字节。可以看出BKP的容量其实非常小,一般只能存储少量的参数。


BKP基本结构

  • 后备区域

图中的橙色部分,我们可以叫做后备区域。注意,是BKP处于后备区域,但后备区域不只有BKP,还有RTC的相关电路。

STM32后备区域的特性就是:当VDD主电源掉电时,后备区域仍然可以由VBAT的备用电池供电;当VDD上电时,后备区域供电会由VBAT切换为VDD,可以节省电池电量。

  • 内部寄存器

BKP里主要有状态寄存器、控制寄存器、数据寄存器、RTC时钟校准寄存器。其中数据寄存器是主要部分,用来存储数据的。每个数据寄存器都是16位的(一个数据寄存器可以存2个字节),对于中容量和小容量的设备,里面有DR1~DR10总共10个数据寄存器,共20个字节。

  • 侵入检测

BKP可以从PC13位置的TAMPER引脚引入一个检测信号,当TAMPER产生一个上升沿或者下降沿时,会清除BKP所有的内容,以保证安全。

  • 时钟输出

将RTC的相关时钟从PC13位置的RTC引脚输出出去,供外部使用。其中,输出校准时钟时,再配合RTC时钟校准寄存器,可以对RTC的误差进行校准。


RTC简介

RTC即实时时钟,STM32中RTC是一个独立的定时器,可为系统提供时钟和日历(年月日时分秒)的功能。挂在APB1总线上。

RTC和时钟配置系统处于后备区域,系统复位时数据不清零,VDD(2.0~3.6V)断电后可借助VBAT(1.8~3.6V)供电继续走时。

  • 秒计数器与分频器

在RTC中,负责计数的装置只有一个32位的秒计数器。且1秒就要自增一次,所以驱动秒计数器的时钟---TR_CLK 是一个1Hz的信号。但实际提供给RTC的时钟,也就是RTCCLK,一般频率都比较高。所以显然需要在这之间加一个分频器,保证输出给计数器的频率为1Hz。

RTC中的预分频器,是一个20位的分频器(可编程),可以选择对输入时钟进行1~2^20分频,这样可以适配不同频率的输入时钟。

  • RTC时钟来源

RTCCLK的来源主要有以下3种:

|------------|-----------|
| HSE时钟除以128 | 8MHz/128 |
| LSE振荡器时钟 | 37.768KHz |
| LSI振荡器时钟 | 40KHz |

其中HSE是高速外部时钟信号(通常为高速晶振)、LSE低速外部时钟信号、LSI低速内部时钟信号。具体可参考RCC章节知识。

**【注意】**为了更好使用RTC模块,外部硬件电路也需要配置好。即备用电池模块、外部低速晶振等。


RTC框图

左边阴影区为核心的分频和计数区域,右边为中断输出使能和NVIC部分,上面为APB1总线读写部分,下面阴影区是与PWR关联的部分。(阴影区均为后备区域)

**【注意】**对于RTC和BKP的寄存器,其实都是16位的。例如左边的RTC_CR控制寄存器,实际上是两个16位的寄存器(RTC_CRH和RTC_CRL)。

  • 分频器

由两个寄存器组成,即重装载寄存器RTC_PRL余数寄存器RTC_DIV,与定时器时基单元的计数器CNT和重装寄存器ARR是一样作用。(且计几个数,溢出一次,就是几分频)

RTC_DIV是自减的计数器,每来一个输入时钟,DIV的值自减一次,自减到0时,再来一个时钟,DIV输出一个脉冲(溢出信号),同时从PRL获取重装值,回到重装值继续自减。

  • 闹钟寄存器

RTC内部除了32位的秒寄存器(RTC_CNT)外,还有一个32位的闹钟寄存器(RTC_ALR),其作用为设置闹钟。

我们可以在ALR里写一个秒数,设定闹钟,当CNT值与ALR设定的闹钟值一样时,就会产生RTC_Alarm闹钟信号,通向右边的中断系统。在中断函数里,可执行需要的操作。

【注意】RTC_Alarm闹钟信号还可使主机退出待机模式。

  • 中断

除了上述的RTC_Alarm闹钟信号能触发中断外,还有RTC_SecondRTC_Overflow能够触发中断。

其中RTC_Second是秒中断,开启后每秒触发一个中断。RTC_Overflow是指当32位的秒计数器计满后溢出时触发的中断,这个中断得到2106年才会触发。


RTC操作注意事项

  • 1、使能

对于一般的片上外设,只需要开启时钟使能即可使用。但对于RTC模块却有些复杂,首先要设置RCC_APB1ENR(开启APB1上外设的时钟),要同时开启PWR和BKP的时钟。然后设置PWR_CR的DBP位,来使能对BKP和RTC的访问。

  • 2、关于读取

若在读取RTC寄存器时,RTC的APB1接口曾经处于禁止状态,则软件首先必须等待RTC_CRL寄存器中的RSF位(寄存器同步标志)被硬件置1。

可观察RTC内部框图,可以看出APB1的时钟为PCLK1,在主电源掉电时会停止;而RTC里的寄存器时钟为RTCCLK。当我们用PCLK1驱动的总线去读取RTCCLK驱动的寄存器时,就会有一个时钟不同步的问题。PCLK1的频率为36MHz,远大于RTCCLK的36KHz,如果在APB1刚开启时就立刻读取RTC寄存器,有可能RTC寄存器还没有更新到APB1总线上,这样读取到的值为错误的。

所以APB1总线刚开启时,要等一下RTCCLK,只要RTCCLK来一个上升沿,RTC把它的寄存器值同步到APB1总线上。

  • 3、关于写入

必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRL、RTC_CNT、RTC_ALR寄存器。

在STM32的标准库函数中,写寄存器的函数都自动帮我们加上了这个操作,不需要我们再配置了。

  • 4、写等待机制

对于RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。仅当RTOFF为1时,才可以写入RTC寄存器。

因为RCLK1与RTCCLK时钟频率不同,用PCLK的频率写入后,这个值还不能立刻更新到RTC寄存器里面,要等RTCCLK时钟来一个上升沿,值更新到RTC寄存器里,写入才算完成。


相关推荐
HPC_fac130520678161 小时前
科研深度学习:如何精选GPU以优化服务器性能
服务器·人工智能·深度学习·神经网络·机器学习·数据挖掘·gpu算力
飞凌嵌入式2 小时前
飞凌嵌入式旗下教育品牌ElfBoard与西安科技大学共建「科教融合基地」
嵌入式硬件·学习·嵌入式·飞凌嵌入式
weixin_452600693 小时前
【青牛科技】电流模式PWM控制器系列--D4870
科技·单片机·嵌入式硬件·音视频·智能电表·白色家电电源·机顶盒电源
嵌新程6 小时前
day06(单片机高级)PCB设计
单片机·嵌入式硬件·pcb
stm 学习ing6 小时前
FPGA 第十讲 避免latch的产生
c语言·开发语言·单片机·嵌入式硬件·fpga开发·fpga
sun0077007 小时前
ubuntu dpkg 删除安装包
运维·服务器·ubuntu
oi778 小时前
使用itextpdf进行pdf模版填充中文文本时部分字不显示问题
java·服务器
学Linux的语莫9 小时前
Ansible使用简介和基础使用
linux·运维·服务器·nginx·云计算·ansible
Onlooker1299 小时前
云服务器部署WebSocket项目
服务器