机器学习算法:监督学习中的逻辑回归

逻辑回归是一种广泛使用的监督学习算法,主要用于二分类问题。虽然名为"回归",但它实际上是一个分类算法,因为它的输出是离散的类别标签。逻辑回归通过使用逻辑函数(或称Sigmoid函数)将线性回归的连续输出值映射到(0,1)区间,从而预测一个事件发生的概率。

逻辑回归的数学表达

逻辑回归模型使用以下公式来预测概率:

P(y=1\|x) = \\frac{1}{1 + e\^{-(\\beta_0 + \\beta_1 x_1 + \\ldots + \\beta_n x_n)}}

其中,( P(y=1|x) ) 是给定特征( x )下,目标变量( y )为1的概率,( \beta_0, \beta_1, \ldots, \beta_n )是模型参数。

损失函数

逻辑回归使用对数似然损失函数,也称为交叉熵损失,来优化模型参数。对于二分类问题,损失函数定义为:

J(\\theta) = -\\frac{1}{m} \\left\[ \\sum_{i=1}\^{m} y\^{(i)} \\log(h_\\theta(x\^{(i)})) + (1 - y\^{(i)}) \\log(1 - h_\\theta(x\^{(i)})) \\right\]

其中,( m )是样本数量,( h_\theta(x) )是模型的预测概率。

梯度下降算法

与线性回归类似,逻辑回归也使用梯度下降算法来优化损失函数。参数更新规则如下:

\\theta_j := \\theta_j - \\alpha \\frac{\\partial}{\\partial \\theta_j} J(\\theta)

其中,( \alpha )是学习率。

代码实现

以下是使用Python和scikit-learn库实现逻辑回归的一个简单示例:

python 复制代码
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target

# 只选择两个类别进行二分类
X = X[y != 2]
y = y[y != 2]

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# 创建逻辑回归模型
model = LogisticRegression()

# 训练模型
model.fit(X_train, y_train)

# 预测
predictions = model.predict(X_test)

# 打印模型参数
print("模型截距:", model.intercept_)
print("模型系数:", model.coef_)

# 计算模型性能
print("准确率:", accuracy_score(y_test, predictions))
题目
  1. 逻辑回归与线性回归的区别:逻辑回归和线性回归在目标函数和应用场景上有何不同?
  2. Sigmoid函数的作用:Sigmoid函数在逻辑回归中扮演什么角色?
  3. 损失函数的选择:为什么逻辑回归选择对数似然损失函数?
  4. 模型评估指标:在分类问题中,除了准确率,还有哪些重要的评估指标?
  5. 正则化:在逻辑回归中如何使用正则化来防止过拟合?
  6. 多分类问题:逻辑回归如何处理多分类问题?

通过深入理解逻辑回归的原理和实践,你可以更有效地应用这一强大的分类算法来解决实际问题。

✅作者简介:热爱科研的人工智能开发者,修心和技术同步精进

❤欢迎关注我的知乎:对error视而不见

代码获取、问题探讨及文章转载可私信。

☁ 愿你的生命中有够多的云翳,来造就一个美丽的黄昏。

🍎获取更多人工智能资料可点击链接进群领取,谢谢支持!👇

点击领取更多详细资料

相关推荐
码农小韩23 分钟前
基于Linux的C++学习——动态数组容器vector
linux·c语言·开发语言·数据结构·c++·单片机·学习
mit6.82429 分钟前
几何|阻碍链
算法
有一个好名字31 分钟前
力扣-小行星碰撞
算法·leetcode·职场和发展
MM_MS31 分钟前
Halcon图像锐化和图像增强、窗口的相关算子
大数据·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
嵌入式-老费37 分钟前
外壳3D结构设计(学习的方法)
学习
lamentropetion39 分钟前
E - Equal Tree Sums CF1656E
算法
代码游侠41 分钟前
应用——智能配电箱监控系统
linux·服务器·数据库·笔记·算法·sqlite
山土成旧客44 分钟前
【Python学习打卡-Day40】从“能跑就行”到“工程标准”:PyTorch训练与测试的规范化写法
pytorch·python·学习
Yyuanyuxin44 分钟前
保姆级学习开发安卓手机软件(一)--安装软件及配置
学习
Xの哲學1 小时前
Linux Platform驱动深度剖析: 从设计思想到实战解析
linux·服务器·网络·算法·边缘计算