QNN:基于QNN+example重构之后的yolov8det部署

QNN是高通发布的神经网络推理引擎,是SNPE的升级版,其主要功能是:

完成从Pytorch/TensorFlow/Keras/Onnx等神经网络框架到高通计算平台的模型转换;

完成模型的低比特量化(int8),使其能够运行在高通神经网络芯片上;

提供测试工具(qnn-net-run),可以运行网络并保存输出;

提供测试工具(qnn-profile-viewer),可以进行FLOPS、参数量、每一层运行时间等分析;

Qualcomm® AI Engine Direct 架构采用模块化设计,可实现软件中的清晰分离 对于不同的硬件核心/加速器,例如 CPU、GPU 和 DSP,指定为 后端。了解有关 Qualcomm® 的更多信息AI Engine Direct后端此处。

针对不同硬件核心/加速器的 Qualcomm® AI Engine Direct 后端被编译为 与 SDK 一起打包的各个特定于核心的库。

跨 IP 核的统一 API

Qualcomm® 的主要亮点之一AI Engine Direct 是它提供了统一的 API 来委托操作 例如跨所有硬件加速器后端的图形创建和执行。这允许用户 将 Qualcomm® AI Engine Direct 视为硬件抽象 API,并将应用程序轻松移植到不同的内核。

正确的抽象级别

Qualcomm® AI Engine Direct API 旨在支持高效的执行模型 具有内部处理的图形优化等功能。 但与此同时,它遗漏了更广泛的功能,例如模型解析和 网络分区到更高级别的框架。

组合的灵活性

借助 Qualcomm® AI Engine Direct,用户可以在后端提供的功能之间进行适当的权衡 以及库大小和内存利用率方面的占用空间。这提供了以下能力: 构建 Qualcomm® AI Engine Direct 操作包,仅包含服务一组模型所需的操作 以用例为目标1。有了这个,用户可以创建灵活的应用程序 内存占用低,适合各种硬件产品。

可扩展的运营支持

Qualcomm® AI Engine Direct 还为客户集成自定义操作以无缝协作提供支持 内置操作。

提高执行性能

凭借优化的网络加载和异步执行支持 Qualcomm®AI Engine Direct 可提供高度 机器学习框架和应用程序加载和执行网络图的高效接口 他们想要的硬件加速器。。

我们主要将QNN重新封装一下完成合适与自己的代码结构与逻辑。因为本身的QNN demo看着太复杂了。

重构之后如下图所示:

输出结果:

相关推荐
留意_yl10 分钟前
量化感知训练(QAT)流程
人工智能
山烛27 分钟前
KNN 算法中的各种距离:从原理到应用
人工智能·python·算法·机器学习·knn·k近邻算法·距离公式
盲盒Q38 分钟前
《频率之光:归途之光》
人工智能·硬件架构·量子计算
墨染点香1 小时前
第七章 Pytorch构建模型详解【构建CIFAR10模型结构】
人工智能·pytorch·python
go54631584651 小时前
基于分组规则的Excel数据分组优化系统设计与实现
人工智能·学习·生成对抗网络·数学建模·语音识别
茫茫人海一粒沙1 小时前
vLLM 的“投机取巧”:Speculative Decoding 如何加速大语言模型推理
人工智能·语言模型·自然语言处理
诗酒当趁年华1 小时前
【NLP实践】二、自训练数据实现中文文本分类并提供RestfulAPI服务
人工智能·自然语言处理·分类
静心问道1 小时前
Idefics3:构建和更好地理解视觉-语言模型:洞察与未来方向
人工智能·多模态·ai技术应用
sheep88881 小时前
AI与区块链Web3技术融合:重塑数字经济的未来格局
人工智能·区块链
奋进的孤狼2 小时前
【Spring AI】阿里云DashScope灵积模型
人工智能·spring·阿里云·ai·云计算