ai数字人音频停顿处理,删除无用音频段

您当前的算法中,当静音段被缩短时,生成的静音样本数量是通过比例缩放计算出来的。但这个方法可能会导致一些音频失真,从而产生"沙沙"的噪音。这是因为在处理静音段时,使用了简单的零填充方式,导致音频数据出现突变,从而产生不自然的声音。

为了改进这个算法,可以采用以下思路:

平滑处理:在静音段过渡到有声音的段落时,使用平滑过渡的方式来避免突变,减少噪音。

减少零填充:在静音段缩短时,可以使用更接近原始音频特性的方式来填充缩短后的静音部分,而不是简单地使用零填充。

public static byte[] ScaleSilence(byte[] inputFile, float silenceThreshold = 0.01f, int silenceDurationMs = 200, int targetSilenceDurationMs = 100)

{

using (var reader = new MyAudioFileReader(inputFile))

{

var samples = new List();

int sampleRate = reader.WaveFormat.SampleRate;

int channels = reader.WaveFormat.Channels;

int silenceSampleCountThreshold = (int)(sampleRate * channels * (silenceDurationMs / 1000.0));

float[] buffer = new float[sampleRate * channels];

int samplesRead;

int silentSampleCount = 0;

List silentSamples = new List();

复制代码
    while ((samplesRead = reader.Read(buffer, 0, buffer.Length)) > 0)
    {
        for (int i = 0; i < samplesRead; i++)
        {
            if (Math.Abs(buffer[i]) <= silenceThreshold)
            {
                silentSampleCount++;
                silentSamples.Add(buffer[i]);
            }
            else
            {
                if (silentSampleCount >= silenceSampleCountThreshold)
                {
                    // 计算缩放比例
                    double scale = (double)targetSilenceDurationMs / (silenceDurationMs * (silentSampleCount / (double)silenceSampleCountThreshold));
                    int samplesToKeep = (int)(silentSampleCount * scale);

                    // 使用渐变过渡来处理缩短后的静音部分
                    for (int j = 0; j < samplesToKeep; j++)
                    {
                        float transitionSample = silentSamples[(int)((j / (float)samplesToKeep) * silentSampleCount)];
                        samples.Add(transitionSample);
                    }
                }
                else
                {
                    // 如果静音部分不足以达到阈值,则不做缩短处理,直接添加原始静音样本
                    samples.AddRange(silentSamples);
                }

                silentSampleCount = 0;
                silentSamples.Clear();
                samples.Add(buffer[i]);
            }
        }
    }

    // 保存处理后的音频
    return SaveToBuferr(samples.ToArray(), reader.WaveFormat);
}

}

改进要点:

平滑处理:改进后的代码在静音段的处理上引入了渐变过渡,而不是直接使用零填充。通过逐步调整静音样本的值,可以平滑地过渡到有声音的部分,避免突变带来的噪音。

静音缩短比例:在缩短静音段时,保留了一部分原始的静音样本,通过对样本进行插值计算(逐渐增加或减少静音样本的强度),避免了沙沙噪音的出现。

以上方法能够减少音频失真并有效移除静音部分,同时避免沙沙的噪音。

相关推荐
EasyGBS3 小时前
EasyGBS算法算力融合架构:GB28181标准平安乡村智能视频监控建设方案设计
架构·音视频
科技小E3 小时前
EasyGBS算法算力融合架构:标准平安乡村智能视频监控建设方案设计
架构·音视频
雾江流4 小时前
小喵播放器 1.1.5| 视频超分提升画质,支持网页视频,B站番剧
音视频·软件工程
li星野5 小时前
OpenCV4.X学习-视频相关
学习·音视频
雪风飞舞6 小时前
python根据音频生成柱状图
开发语言·python·音视频
狗狗学不会6 小时前
RK3588 极致性能:使用 Pybind11 封装 MPP 实现 Python 端 8 路视频硬件解码
人工智能·python·音视频
知南x7 小时前
【物联网视频监控系统----韦东山老师视频总结】(4)流媒体方案的实现之ffmpeg
ffmpeg·音视频
老兵发新帖7 小时前
基于Label Studio的视频标注与YOLO模型训练全流程指南
python·yolo·音视频
EasyCVR8 小时前
视频融合平台EasyCVR构建太阳能供电远程视频监控系统的智慧中枢
人工智能·音视频
EasyCVR9 小时前
EasyCVR全栈视频技术:线下零售数字化智能视频监控体系建设实践
音视频·零售