Redis进阶(六):缓存

1.缓存

速度快的设备可以作为速度慢的设备的缓存

缓存能够有意义:二八定律,20%的数据可以应对80%的请求

通常使用redis作为数据库的缓存(mysql)

数据库是非常重要的组件,mysql速度比较慢

因为mysql等数据库,效率比较低,所以承担的并发量有限,一旦请求数量变多了,数据库的压力就会提高。

服务器每次处理一个请求,一定都要消耗一定的系统资源,如果某个资源达到上限,就会出现故障。

处理以上问题有俩种方式:

2.缓存更新策略

1.定期生成

会把访问的数据,以日志的形式记录下来,每次数据被访问,日志会记录下来,因此就可以统计热点数据,根据日志中统计热点数据的维度来进行定期更新缓存(天、月)

这个时候就可以写一套离线流程(shell、py脚本)通过定时任务触发:a、完成统计热词的过程;b、根据热词找到搜索结果的数据 c、把缓存数据同步到缓存服务器上 d、控制这些缓存服务器的重启

这种方式可控但缺少实时性,无法应对突发事件

2.实时生成

如果在缓存查到了,返回结果

如果redis中不存在,从数据库查数据,查到的数据先保存到redis中,并且返回结果

但是这样不停的往redis中填写数据会导致redis内存占用越来越多:需要一个淘汰策略

3.缓存预热

缓存中的数据有俩种方式生成:定期生成和实时生成,定期生成不涉及预热~

那在实时生成的具体业务是:redis查询不到数据再从mysql中查询,当redis刚启动其中没有数据的时候,所有请求会给到mysql,mysql压力也会大,但随着时间的推移redis上的数据越积越多

缓存预热就是解决以上问题,缓存预热把定期生成和实时生成结合一下,先通过离线的方式,通过一些统计的途径,先把热点数据找到一批,导入到redis中。随着时间推移,逐渐就可以使用新的热点数据淘汰掉旧的数据

4.缓存穿透

查询的某个key,在redis中没有,mysql也没有,这个key肯定也不会被更新到缓存中~

这次查询没有下次还是没有,反复查询,如果这种情况出现很多会对mysql造成巨大的压力

产生原因:

1、业务设计不合理,缺少必要的参数校验

2、开发运维误操作,数据被删除

3、黑客

如何解决

1、改进业务/加强监控报警

2、如果发现当前key不存在redis和mysql:

a、当前数据写入到redis中,value设置成非法值 ""

b、引入布隆过滤器,每次查询redis/mysql之前,先判定一下key是否存在布隆过滤器上(把所有key存到布隆过滤器)

5.缓存雪崩

短时间内,redis中大规模key失效,导致缓存命中率陡然下降,并且mysql的压力迅速上升,甚至直接宕机。

产生原因:

1、redis挂了

2、redis没挂,可能之前短时间内设置大量的key请求,且过期时间相同

如何解决:

1、加强监控报警,加强redis集群可用性保证

2、不给key设置过期时间/过期时间添加随即因子:避免同一时刻过期

6.缓存击穿

相对于缓存雪崩,这里主要指的是热点key,突然过期了,导致大量的请求直接访问到数据库上,甚至引发数据库宕机。

我们可用通过统计的方式发现热点key ,并设置永不过期 ,进行必要的服务降级,例如访问数据库的时候使用分布式锁,限制同时请求数据库的并发数

相关推荐
策知道1 分钟前
从“抗旱保苗”到“修渠引水”:读懂五年财政政策的变奏曲
大数据·数据库·人工智能·搜索引擎·政务
深圳市恒星物联科技有限公司14 分钟前
恒星物联亮相湖南城市生命线安全工程培训会展会
大数据·数据库·物联网
此生只爱蛋27 分钟前
【Redis】数据类型补充
数据库·redis·缓存
残雪飞扬27 分钟前
MySQL 8.0安装
数据库·mysql
zgl_2005377927 分钟前
ZGLanguage 解析SQL数据血缘 之 提取select语句中的源表名
大数据·数据库·c++·数据仓库·sql·数据库开发·etl
在风中的意志27 分钟前
[数据库SQL] [leetcode-584] 584. 寻找用户推荐人
数据库·sql·leetcode
么么...1 小时前
深入理解数据库事务与MVCC机制
数据库·经验分享·sql·mysql
2201_757830871 小时前
AOP核心概念
java·前端·数据库
JIngJaneIL1 小时前
基于java+ vue学生成绩管理系统(源码+数据库+文档)
java·前端·数据库·vue.js·spring boot·后端
爱码小白1 小时前
logging输出日志
数据库