Redis进阶(六):缓存

1.缓存

速度快的设备可以作为速度慢的设备的缓存

缓存能够有意义:二八定律,20%的数据可以应对80%的请求

通常使用redis作为数据库的缓存(mysql)

数据库是非常重要的组件,mysql速度比较慢

因为mysql等数据库,效率比较低,所以承担的并发量有限,一旦请求数量变多了,数据库的压力就会提高。

服务器每次处理一个请求,一定都要消耗一定的系统资源,如果某个资源达到上限,就会出现故障。

处理以上问题有俩种方式:

2.缓存更新策略

1.定期生成

会把访问的数据,以日志的形式记录下来,每次数据被访问,日志会记录下来,因此就可以统计热点数据,根据日志中统计热点数据的维度来进行定期更新缓存(天、月)

这个时候就可以写一套离线流程(shell、py脚本)通过定时任务触发:a、完成统计热词的过程;b、根据热词找到搜索结果的数据 c、把缓存数据同步到缓存服务器上 d、控制这些缓存服务器的重启

这种方式可控但缺少实时性,无法应对突发事件

2.实时生成

如果在缓存查到了,返回结果

如果redis中不存在,从数据库查数据,查到的数据先保存到redis中,并且返回结果

但是这样不停的往redis中填写数据会导致redis内存占用越来越多:需要一个淘汰策略

3.缓存预热

缓存中的数据有俩种方式生成:定期生成和实时生成,定期生成不涉及预热~

那在实时生成的具体业务是:redis查询不到数据再从mysql中查询,当redis刚启动其中没有数据的时候,所有请求会给到mysql,mysql压力也会大,但随着时间的推移redis上的数据越积越多

缓存预热就是解决以上问题,缓存预热把定期生成和实时生成结合一下,先通过离线的方式,通过一些统计的途径,先把热点数据找到一批,导入到redis中。随着时间推移,逐渐就可以使用新的热点数据淘汰掉旧的数据

4.缓存穿透

查询的某个key,在redis中没有,mysql也没有,这个key肯定也不会被更新到缓存中~

这次查询没有下次还是没有,反复查询,如果这种情况出现很多会对mysql造成巨大的压力

产生原因:

1、业务设计不合理,缺少必要的参数校验

2、开发运维误操作,数据被删除

3、黑客

如何解决

1、改进业务/加强监控报警

2、如果发现当前key不存在redis和mysql:

a、当前数据写入到redis中,value设置成非法值 ""

b、引入布隆过滤器,每次查询redis/mysql之前,先判定一下key是否存在布隆过滤器上(把所有key存到布隆过滤器)

5.缓存雪崩

短时间内,redis中大规模key失效,导致缓存命中率陡然下降,并且mysql的压力迅速上升,甚至直接宕机。

产生原因:

1、redis挂了

2、redis没挂,可能之前短时间内设置大量的key请求,且过期时间相同

如何解决:

1、加强监控报警,加强redis集群可用性保证

2、不给key设置过期时间/过期时间添加随即因子:避免同一时刻过期

6.缓存击穿

相对于缓存雪崩,这里主要指的是热点key,突然过期了,导致大量的请求直接访问到数据库上,甚至引发数据库宕机。

我们可用通过统计的方式发现热点key ,并设置永不过期 ,进行必要的服务降级,例如访问数据库的时候使用分布式锁,限制同时请求数据库的并发数

相关推荐
小鹿撞出了脑震荡6 分钟前
SQLite3语句以及用实现FMDB数据存储的学习
数据库·学习·sqlite
小草儿7996 分钟前
gbase8s之mysql的show命令实现
数据库·mysql
斯普信专业组19 分钟前
MongoDB调优利器:掌握性能分析工具mongostat
数据库·mongodb·mongostat
会code的厨子20 分钟前
Redis缓存高可用集群
redis·缓存
.27 分钟前
接口 测试
数据库·oracle
码到成功>_<1 小时前
Spring Boot实现License生成和校验
数据库·spring boot·后端
尽兴-1 小时前
Redis模拟延时队列 实现日程提醒
java·redis·java-rocketmq·mq
boy快快长大2 小时前
将大模型生成数据存入Excel,并用增量的方式存入Excel
java·数据库·excel
daiyang123...2 小时前
MySQL【知识改变命运】11
android·数据库·mysql
Moshow郑锴2 小时前
数据库、数据仓库、数据湖、数据中台、湖仓一体的概念和区别
大数据·数据库·数据仓库·数据湖·湖仓一体