图像分割分析效果2

这次加了结构化损失

训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915

dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816

加了结构化损失后:avg_score: 0.8917 - dice: 0.9228 - iou: 0.8627 - loss: 0.1098 - mae: 0.0191

其实效果有提升,之前自定义的指标有问题,它返回的是最后一个批次的统计信息,现在返回的是整个数据集的平均信息

model.evaluate(train_dataset)

验证集504个样本,dice: 0.8096 - iou: 0.7138 - loss: 0.1267 - mae: 0.0429 - total: 0.7617

dice: 0.8113 - iou: 0.7135 - loss: 0.1024 - mae: 0.0409 - total: 0.7624

加了结构化损失后:avg_score: 0.7687 - dice: 0.8189 - iou: 0.7242 - loss: 0.2894 - mae: 0.0393

len(val_dataset)*BATCH_SIZE,验证集

经过最后的一番优化后

模型在训练集上的表现,因为验证集和训练集不同,模型并没有训练验证集上数据

训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915

dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816

加了结构化损失后:avg_score: 0.8917 - dice: 0.9228 - iou: 0.8627 - loss: 0.1098 - mae: 0.0191

其实效果有提升,之前自定义的指标有问题,它返回的是最后一个批次的统计信息,现在返回的是整个数据集的平均信息

稍微修改了dropout后:avg_score: 0.9160 - dice: 0.9411 - iou: 0.8921 - loss: 0.2218 - mae: 0.0140

model.evaluate(train_dataset)

模型在训练集上的表现可以说相当好,再来看模型在验证集上的表现,模型从未拟合过验证集数据因为我不是用的随机拆分,也没重启内核

验证集504个样本,dice: 0.8096 - iou: 0.7138 - loss: 0.1267 - mae: 0.0429 - total: 0.7617

dice: 0.8113 - iou: 0.7135 - loss: 0.1024 - mae: 0.0409 - total: 0.7624

加了结构化损失后:avg_score: 0.7687 - dice: 0.8189 - iou: 0.7242 - loss: 0.2894 - mae: 0.0393

稍微修改了dropout后:avg_score: 0.7939 - dice: 0.8403 - iou: 0.7524 - loss: 0.5245 - mae: 0.0322

len(val_dataset)*BATCH_SIZE

虽然这张图片真实掩码有半截身子的人 ,但是我还是觉得模型预测的很正确,半截身子的人不能当前景,应该只有没被裁剪的人当前景,因为这个数据集中很多裁剪的人当背景的

相关推荐
MoonBit月兔9 分钟前
年终 Meetup:走进腾讯|AI 原生编程与 Code Agent 实战交流会
大数据·开发语言·人工智能·腾讯云·moonbit
大模型任我行34 分钟前
人大:熵引导的LLM有限数据训练
人工智能·语言模型·自然语言处理·论文笔记
weixin_4684668542 分钟前
YOLOv13结合代码原理详细解析及模型安装与使用
人工智能·深度学习·yolo·计算机视觉·图像识别·目标识别·yolov13
蹦蹦跳跳真可爱5891 小时前
Python----大模型(GPT-2模型训练加速,训练策略)
人工智能·pytorch·python·gpt·embedding
xwill*1 小时前
π∗0.6: a VLA That Learns From Experience
人工智能·pytorch·python
jiayong231 小时前
知识库概念与核心价值01
java·人工智能·spring·知识库
雨轩剑1 小时前
做 AI 功能不难,难的是把 App 发布上架
人工智能·开源软件
Tezign_space2 小时前
AI智能体赋能实践:从提示工程到上下文工程的架构演进
人工智能·架构·agentic ai·上下文工程·大模型智能体·长程任务·模型注意力预算
..过云雨2 小时前
17-2.【Linux系统编程】线程同步详解 - 条件变量的理解及应用
linux·c++·人工智能·后端
kalvin_y_liu2 小时前
【2026年经济周期关键节点案例分析】
人工智能