图像分割分析效果2

这次加了结构化损失

训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915

dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816

加了结构化损失后:avg_score: 0.8917 - dice: 0.9228 - iou: 0.8627 - loss: 0.1098 - mae: 0.0191

其实效果有提升,之前自定义的指标有问题,它返回的是最后一个批次的统计信息,现在返回的是整个数据集的平均信息

model.evaluate(train_dataset)

验证集504个样本,dice: 0.8096 - iou: 0.7138 - loss: 0.1267 - mae: 0.0429 - total: 0.7617

dice: 0.8113 - iou: 0.7135 - loss: 0.1024 - mae: 0.0409 - total: 0.7624

加了结构化损失后:avg_score: 0.7687 - dice: 0.8189 - iou: 0.7242 - loss: 0.2894 - mae: 0.0393

len(val_dataset)*BATCH_SIZE,验证集

经过最后的一番优化后

模型在训练集上的表现,因为验证集和训练集不同,模型并没有训练验证集上数据

训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915

dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816

加了结构化损失后:avg_score: 0.8917 - dice: 0.9228 - iou: 0.8627 - loss: 0.1098 - mae: 0.0191

其实效果有提升,之前自定义的指标有问题,它返回的是最后一个批次的统计信息,现在返回的是整个数据集的平均信息

稍微修改了dropout后:avg_score: 0.9160 - dice: 0.9411 - iou: 0.8921 - loss: 0.2218 - mae: 0.0140

model.evaluate(train_dataset)

模型在训练集上的表现可以说相当好,再来看模型在验证集上的表现,模型从未拟合过验证集数据因为我不是用的随机拆分,也没重启内核

验证集504个样本,dice: 0.8096 - iou: 0.7138 - loss: 0.1267 - mae: 0.0429 - total: 0.7617

dice: 0.8113 - iou: 0.7135 - loss: 0.1024 - mae: 0.0409 - total: 0.7624

加了结构化损失后:avg_score: 0.7687 - dice: 0.8189 - iou: 0.7242 - loss: 0.2894 - mae: 0.0393

稍微修改了dropout后:avg_score: 0.7939 - dice: 0.8403 - iou: 0.7524 - loss: 0.5245 - mae: 0.0322

len(val_dataset)*BATCH_SIZE

虽然这张图片真实掩码有半截身子的人 ,但是我还是觉得模型预测的很正确,半截身子的人不能当前景,应该只有没被裁剪的人当前景,因为这个数据集中很多裁剪的人当背景的

相关推荐
在努力的韩小豪3 分钟前
如何从0开始构建自己的第一个AI应用?(Prompt工程、Agent自定义、Tuning)
人工智能·python·llm·prompt·agent·ai应用·mcp
云卓SKYDROID3 分钟前
无人机环境感知系统运行与技术难点!
人工智能·计算机视觉·目标跟踪·无人机·科普·高科技·云卓科技
网安INF21 分钟前
深度学习中的 Seq2Seq 模型与注意力机制
人工智能·深度学习·神经网络·注意力机制·seq2seq
火山引擎开发者社区1 小时前
ByteBrain x 清华 VLDB25|时序多模态大语言模型 ChatTS
人工智能·语言模型·自然语言处理
SoaringPigeon1 小时前
从深度学习的角度看自动驾驶
人工智能·深度学习·自动驾驶
产品经理独孤虾1 小时前
如何利用AI大模型对已有创意进行评估,打造杀手级的广告创意
人工智能·大模型·aigc·产品经理·数字营销·智能营销·智能创意生成
MobotStone1 小时前
无代码+AI时代,为什么你仍然需要像个开发者一样思考
人工智能·算法
张较瘦_2 小时前
[论文阅读] 人工智能 + 软件工程 | LLM辅助软件开发:需求如何转化为代码?
论文阅读·人工智能·软件工程
whabc1002 小时前
和鲸社区深度学习基础训练营2025年关卡3_Q1(1)
人工智能·深度学习
勤奋的知更鸟2 小时前
标准化模型格式ONNX介绍:打通AI模型从训练到部署的环节
人工智能·语言模型