图像分割分析效果2

这次加了结构化损失

训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915

dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816

加了结构化损失后:avg_score: 0.8917 - dice: 0.9228 - iou: 0.8627 - loss: 0.1098 - mae: 0.0191

其实效果有提升,之前自定义的指标有问题,它返回的是最后一个批次的统计信息,现在返回的是整个数据集的平均信息

model.evaluate(train_dataset)

验证集504个样本,dice: 0.8096 - iou: 0.7138 - loss: 0.1267 - mae: 0.0429 - total: 0.7617

dice: 0.8113 - iou: 0.7135 - loss: 0.1024 - mae: 0.0409 - total: 0.7624

加了结构化损失后:avg_score: 0.7687 - dice: 0.8189 - iou: 0.7242 - loss: 0.2894 - mae: 0.0393

len(val_dataset)*BATCH_SIZE,验证集

经过最后的一番优化后

模型在训练集上的表现,因为验证集和训练集不同,模型并没有训练验证集上数据

训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915

dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816

加了结构化损失后:avg_score: 0.8917 - dice: 0.9228 - iou: 0.8627 - loss: 0.1098 - mae: 0.0191

其实效果有提升,之前自定义的指标有问题,它返回的是最后一个批次的统计信息,现在返回的是整个数据集的平均信息

稍微修改了dropout后:avg_score: 0.9160 - dice: 0.9411 - iou: 0.8921 - loss: 0.2218 - mae: 0.0140

model.evaluate(train_dataset)

模型在训练集上的表现可以说相当好,再来看模型在验证集上的表现,模型从未拟合过验证集数据因为我不是用的随机拆分,也没重启内核

验证集504个样本,dice: 0.8096 - iou: 0.7138 - loss: 0.1267 - mae: 0.0429 - total: 0.7617

dice: 0.8113 - iou: 0.7135 - loss: 0.1024 - mae: 0.0409 - total: 0.7624

加了结构化损失后:avg_score: 0.7687 - dice: 0.8189 - iou: 0.7242 - loss: 0.2894 - mae: 0.0393

稍微修改了dropout后:avg_score: 0.7939 - dice: 0.8403 - iou: 0.7524 - loss: 0.5245 - mae: 0.0322

len(val_dataset)*BATCH_SIZE

虽然这张图片真实掩码有半截身子的人 ,但是我还是觉得模型预测的很正确,半截身子的人不能当前景,应该只有没被裁剪的人当前景,因为这个数据集中很多裁剪的人当背景的

相关推荐
Godspeed Zhao1 小时前
自动驾驶中的传感器技术36——Lidar(11)
人工智能·机器学习·自动驾驶·全固态激光雷达
不老刘2 小时前
《生成式AI消费级应用Top 100——第五版》| a16z
人工智能·ai·chatgpt·a16z
此处不留情4 小时前
基于pytorch的垃圾分类识别项目实战
人工智能·pytorch
mit6.8244 小时前
[AI人脸替换] docs | 环境部署指南 | 用户界面解析
人工智能·python
fantasy_arch4 小时前
Pytorch超分辨率模型实现与详细解释
人工智能·pytorch·python
爱读源码的大都督5 小时前
小白LLM教程:不训练模型,如何进行微调?
java·人工智能·后端
大千AI助手5 小时前
接吻数问题:从球体堆叠到高维空间的数学奥秘
人工智能·agi·deepmind·接吻数·kissingnumber·牛顿·alphaevolve
程序猿小D5 小时前
【完整源码+数据集+部署教程】硬币分类与识别系统源码和数据集:改进yolo11-SWC
人工智能·yolo·计算机视觉·数据挖掘·数据集·yolo11·硬币分类与识别系统
西猫雷婶7 小时前
神经网络|(十六)概率论基础知识-伽马函数·中
人工智能·深度学习·神经网络·学习·机器学习·概率论
Y|7 小时前
XGBoost(eXtreme Gradient Boosting,优化分布式梯度提升库)总结梳理
人工智能·算法·机器学习