构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类

深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类

引言

在计算机视觉领域中,CIFAR-10数据集是一个经典的基准数据集,广泛用于图像分类任务。本文将介绍如何使用PyTorch框架构建一个简单的卷积神经网络(CNN),并在CIFAR-10数据集上进行训练和评估。通过本文,您将了解到数据预处理、模型定义、训练过程及结果可视化的完整流程。

数据预处理

首先,我们需要加载并预处理CIFAR-10数据集。CIFAR-10包含60000张32x32的彩色图像,分为10个类别,每个类别有6000张图像。我们使用torchvision库来轻松加载这些数据,并应用一些基本的变换,如归一化。

python 复制代码
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 归一化到[-1, 1]
])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
模型定义

接下来,我们定义一个简单的卷积神经网络。该网络包含三个卷积层,两个池化层,以及两个全连接层。

python 复制代码
import torch.nn as nn

class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
        self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
        self.fc1 = nn.Linear(64 * 8 * 8, 64)  # 考虑到池化层后的尺寸
        self.fc2 = nn.Linear(64, 10)

    def forward(self, x):
        x = self.pool(torch.relu(self.conv1(x)))
        x = self.pool(torch.relu(self.conv2(x)))
        x = torch.relu(self.conv3(x))
        x = x.view(-1, 64 * 8 * 8)  # flatten
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

net = ConvNet()
训练过程

我们使用Adam优化器和交叉熵损失函数来训练模型,并将模型训练10个epoch。训练过程中,我们记录每个epoch的平均损失。

python 复制代码
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)

num_epochs = 10
loss_history = []  # 记录每个epoch的平均损失
for epoch in range(num_epochs):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 100 == 99:
            print(f'[{epoch + 1}, {i + 1}] loss: {running_loss / 100}')
            running_loss = 0.0

    epoch_loss = running_loss / len(trainloader)
    loss_history.append(epoch_loss)

print('Finished Training')
模型评估

训练完成后,我们在测试集上评估模型的性能,并计算准确率。

python 复制代码
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

final_accuracy = 100 * correct / total

print(f'Accuracy of the network on the 10000 test images: {final_accuracy} %')
结果可视化

最后,我们将训练过程中的损失和最终的准确率进行可视化,以便更直观地了解模型的训练效果。

python 复制代码
import matplotlib.pyplot as plt

# 可视化损失
plt.plot(range(1, num_epochs + 1), loss_history)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss History')
plt.show()

# 可视化准确率
plt.bar(1, final_accuracy, width=0.4, label='Final Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.title('Final Accuracy on Test Set')
plt.legend()
plt.show()
结论

本文介绍了如何使用PyTorch构建并训练一个简单的卷积神经网络对CIFAR-10数据集进行分类。通过数据预处理、模型定义、训练及结果可视化,我们完整地展示了深度学习项目的流程。希望本文能为您提供一些有用的参考和启发,帮助您在自己的深度学习项目中取得更好的成果。

相关推荐
mingo_敏几秒前
深度学习中的并行策略概述:2 Data Parallelism
人工智能·深度学习
終不似少年遊*35 分钟前
美国加州房价数据分析01
人工智能·python·机器学习·数据挖掘·数据分析·回归算法
区块链小八歌1 小时前
链原生 Web3 AI 网络 Chainbase 推出 AVS 主网, 拓展 EigenLayer AVS 场景
人工智能
禾高网络1 小时前
租赁小程序成品|租赁系统搭建核心功能
java·人工智能·小程序
湫ccc2 小时前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate2 小时前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜3 小时前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
GocNeverGiveUp3 小时前
机器学习1-简单神经网络
人工智能·机器学习
Schwertlilien3 小时前
图像处理-Ch2-空间域的图像增强
人工智能
智慧化智能化数字化方案3 小时前
深入解读数据资产化实践指南(2024年)
大数据·人工智能·数据资产管理·数据资产入表·数据资产化实践指南