【机器学习】Boosting与Bagging算法

Boosting与Bagging算法

[1. Bagging(Bootstrap Aggregating)](#1. Bagging(Bootstrap Aggregating))

核心思想:

Bagging的步骤:

例子:

Bagging的优势:

适用场景:

[2. Boosting](#2. Boosting)

核心思想:

Boosting的步骤:

例子:

Boosting的优势:

缺点:

适用场景:

[Bagging vs Boosting 总结对比:](#Bagging vs Boosting 总结对比:)

结论:


|---------------------|
| 🎈边走、边悟🎈迟早会好 |

Boosting 和 Bagging 是两种常用的集成学习方法,它们通过结合多个弱学习器(弱分类器或回归器)来提升模型的整体性能。虽然两者的目标相同,但它们在工作原理、如何训练模型和组合结果的方式上有显著的不同。

1. Bagging(Bootstrap Aggregating)

核心思想:

Bagging的核心思想是并行训练多个弱学习器,通过减少模型的方差来提升整体性能。它通过随机采样创建多个训练集(有放回采样),然后对每个训练集训练一个模型,最后将这些模型的输出进行组合(例如分类问题用投票法,回归问题用平均法)。

Bagging的步骤:
  1. 数据采样:从原始数据集中随机有放回地抽取子集,生成多个不同的训练集。
  2. 训练多个模型:对每个子集分别训练一个模型,模型可以是决策树、线性回归、KNN等。
  3. 结果融合
    • 分类问题:通过投票法,即选择多数模型的预测结果作为最终结果。
    • 回归问题:通过平均法,即取所有模型输出的均值。
例子:

随机森林是Bagging的经典应用。它使用多个决策树作为弱学习器,通过随机采样特征和样本来训练每棵树,并通过投票得到最终分类结果。

Bagging的优势:
  • 降低方差:通过平均多个模型的预测,Bagging能显著减少方差,防止模型过拟合。
  • 并行训练:每个模型可以并行训练,训练效率较高。
适用场景:

Bagging适用于高方差的模型,如决策树、神经网络等。这些模型对训练数据敏感,容易过拟合,而Bagging可以有效降低这种风险。


2. Boosting

核心思想:

Boosting的核心思想是串行训练多个弱学习器 ,每个新模型都试图修正前一个模型的错误。与Bagging不同,Boosting注重减少偏差,通过逐步改进模型性能来提升整体的准确性。

Boosting的步骤:
  1. 初始化:训练第一个弱学习器,并在整个训练数据上进行预测。
  2. 更新权重
    • 在每次迭代中,Boosting会为每个样本分配一个权重,错误分类的样本会获得更大的权重,下一步的模型会更关注这些样本。
    • 新的弱学习器会针对这些权重进行训练,以更好地处理之前分类错误的样本。
  3. 结果融合:将所有弱学习器的结果加权组合,最终得到强学习器。每个弱学习器的权重通常根据其错误率决定,错误率越低的模型权重越大。
例子:

AdaBoostGradient Boosting是Boosting的代表算法。

  • AdaBoost:在每一轮迭代中,增加被错误分类的样本的权重。
  • Gradient Boosting:通过最小化目标函数的梯度方向来逐步训练模型,常用于回归问题和分类问题。
Boosting的优势:
  • 降低偏差:Boosting逐步改进模型,使得整体模型更具鲁棒性,能够减少偏差。
  • 精度高:Boosting的串行模型会不断修正前一步模型的错误,通常最终的集成模型性能优越。
缺点:
  • 训练时间长:由于模型是串行训练的,训练时间相对较长,尤其是在大数据集上。
  • 容易过拟合:如果模型的迭代次数太多,Boosting可能会过拟合训练数据,尤其是在有噪声的数据集上。
适用场景:

Boosting适用于高偏差的模型,例如线性回归、弱决策树等。在这些模型上,Boosting可以有效减少偏差并提高预测准确性。


Bagging vs Boosting 总结对比:

特性 Bagging Boosting
核心思想 并行训练多个模型,平均结果减少方差 串行训练模型,每次迭代纠正上一步的错误
数据采样 随机有放回采样,生成多个子集 通过权重调整关注难以分类的样本
弱学习器 独立训练 每个学习器依赖前一个学习器的结果
训练效率 并行训练,训练速度较快 串行训练,训练时间较长
偏差与方差 减少方差,防止过拟合 减少偏差,提升精度
代表算法 随机森林 AdaBoost, Gradient Boosting
适用场景 高方差的模型,如决策树、神经网络 高偏差的模型,如线性模型、弱决策树

结论:

  • Bagging 更适合用于减少模型的方差,防止过拟合,适合高方差模型。
  • Boosting 更适合用于减少偏差,逐步提升模型的精度,但可能导致过拟合,适合高偏差模型。

两者可以在不同场景下使用,根据数据的特点和模型的表现来选择合适的集成方法。

🌟感谢支持 听忆.-CSDN博客

|--------------------|
| 🎈众口难调🎈从心就好 |

相关推荐
海洲探索-Hydrovo2 小时前
TTP Aether X 天通透传模块丨国产自主可控大数据双向通讯定位模组
网络·人工智能·科技·算法·信息与通信
2401_841495645 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
Jonkin-Ma5 小时前
每日算法(1)之单链表
算法
晚风残6 小时前
【C++ Primer】第六章:函数
开发语言·c++·算法·c++ primer
杨云强6 小时前
离散积分,相同表达式数组和公式
算法
地平线开发者6 小时前
征程 6 | BPU trace 简介与实操
算法·自动驾驶
满天星83035776 小时前
【C++】AVL树的模拟实现
开发语言·c++·算法·stl
Wnq100726 小时前
如何在移动 的巡检机器人上,实现管道跑冒滴漏的视觉识别
数码相机·opencv·机器学习·计算机视觉·目标跟踪·自动驾驶
Lris-KK6 小时前
力扣Hot100--94.二叉树的中序遍历、144.二叉树的前序遍历、145.二叉树的后序遍历
python·算法·leetcode
麦麦鸡腿堡7 小时前
Java的动态绑定机制(重要)
java·开发语言·算法