Stable Diffusion绘画 | ControlNet应用-Tile(分块)—tile_colorfix+sharp(分块-固定颜色+锐化)

单纯使用 Canny 生成的图片,仅能保障图片的外轮廓、构图与人物的神态与原图相似,但颜色相差非常大:

生成图片如下:

因此,开启第二个 ControlNet:

生成的图片,整体颜色就能做到与原图相似了:

将控制颜色的 Variation值 提高,能给SD在颜色上更多的发挥空间,同时将控制模式选择「更偏向 ControlNet」:

提示词输入:1girl,red hair,头发的颜色就会融入红色的元素,生成图片如下:

今天先分享到这里~


开启实践: SD绘画 | 为你所做的学习过滤

相关推荐
脆皮泡泡2 分钟前
Ultiverse 和web3新玩法?AI和GameFi的结合是怎样
人工智能·web3
机器人虎哥5 分钟前
【8210A-TX2】Ubuntu18.04 + ROS_ Melodic + TM-16多线激光 雷达评测
人工智能·机器学习
码银12 分钟前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
何大春16 分钟前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
uncle_ll24 分钟前
PyTorch图像预处理:计算均值和方差以实现标准化
图像处理·人工智能·pytorch·均值算法·标准化
宋1381027972024 分钟前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉
SEVEN-YEARS28 分钟前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow
世优科技虚拟人31 分钟前
AI、VR与空间计算:教育和文旅领域的数字转型力量
人工智能·vr·空间计算
cloud studio AI应用37 分钟前
腾讯云 AI 代码助手:产品研发过程的思考和方法论
人工智能·云计算·腾讯云
禁默1 小时前
第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)
人工智能·机器人·智能控制