Stable Diffusion绘画 | ControlNet应用-Tile(分块)—tile_colorfix+sharp(分块-固定颜色+锐化)

单纯使用 Canny 生成的图片,仅能保障图片的外轮廓、构图与人物的神态与原图相似,但颜色相差非常大:

生成图片如下:

因此,开启第二个 ControlNet:

生成的图片,整体颜色就能做到与原图相似了:

将控制颜色的 Variation值 提高,能给SD在颜色上更多的发挥空间,同时将控制模式选择「更偏向 ControlNet」:

提示词输入:1girl,red hair,头发的颜色就会融入红色的元素,生成图片如下:

今天先分享到这里~


开启实践: SD绘画 | 为你所做的学习过滤

相关推荐
泰迪智能科技011 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手2 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
Eric.Lee20212 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
cd_farsight2 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说2 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu2 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理
PowerBI学谦3 小时前
使用copilot轻松将电子邮件转为高效会议
人工智能·copilot
audyxiao0013 小时前
AI一周重要会议和活动概览
人工智能·计算机视觉·数据挖掘·多模态
Jeremy_lf3 小时前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型