期货赫兹量化-种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES

进化策略(Evolution Strategies, ES)是一种启发式算法,旨在模仿自然选择的过程来解决复杂的优化问题,尤其在没有显式解、或搜索空间巨大的情况下表现良好。基于自然界的进化原理,进化策略通过突变、选择等遗传算子迭代生成解,并最终寻求全局最优解。

进化策略通常基于两个核心机制:突变和选择。突变是对当前解进行随机扰动,而选择则用于保留适应度更高的个体。本文详细介绍了 (μ,λ)-ES 和 (μ+λ)-ES 两种主要的进化策略变体。

主要变体

  1. (1+1)-ES:

    • 这是最简单的变体,适用于小规模问题。
    • 每次只创建一个后代,与当前解进行比较,保留最优者。
    • 由于仅依赖一个突变解,因此在高维问题上表现不佳。
  2. (μ,λ)-ES:

    • 该变体每次生成 λ 个后代,并从中选择最优的 μ 个后代作为下一代的亲本。
    • 亲本会在每一代被完全替换,促进了对解空间的全面探索。
    • 该方法有助于避免过早收敛,适用于更复杂的问题。
  3. (μ+λ)-ES:

    • 类似于 (μ,λ)-ES,但亲本和后代共同参与竞争。
    • 该方法允许最佳的亲本保留到下一代,保持多样性,同时进一步探索局部和全局解。

优化方法

进化策略可以通过引入重组进一步优化。重组允许多个亲本的遗传信息结合到同一个后代中,从而提升群体的多样性和适应性。这使得进化策略能够更有效地搜索解空间,找到比单一突变更优的解。

在典型的 (μ,λ)-ES 算法中,每一代群体会完全替换为新的后代,而 (μ+λ)-ES 则允许亲本和后代之间的竞争。由于 (μ+λ)-ES 结合了亲本和后代的优势,其收敛性通常优于 (μ,λ)-ES。

伪代码示例

(μ,λ)-ES:

复制代码

text

复制代码

1. 初始化一个随机个体的群体。 2. 重复直到满足停止条件: 2.1 对每个亲本使用突变操作生成 λ 个后代。 2.2 选择 λ 个后代中的最佳 μ 个组成新的亲本群体。 3. 返回最优解。

(μ+λ)-ES:

复制代码

text

复制代码

1. 初始化一个随机个体的群体。 2. 重复直到满足停止条件: 2.1 对每个亲本使用突变操作生成 λ 个后代。 2.2 将亲本与后代合并,选择最优的 μ 个个体作为新的亲本群体。 3. 返回最优解。

通过对 (μ,λ)-ES 添加重组,可以在每一代生成的后代中加入更多的多样性,这将进一步提高算法的搜索效率。在复杂多维问题上,重组可以避免算法陷入局部最优解,从而有助于找到全局最优解。

总结

进化策略算法通过模拟自然选择和进化过程,利用遗传算子如突变和重组来生成优化解。它们尤其适用于复杂的多维优化问题。

相关推荐
努力学习的小廉4 分钟前
我爱学算法之—— 多源BFS
算法·宽度优先
WWZZ20251 小时前
快速上手大模型:深度学习11(数据增强、微调、目标检测)
人工智能·深度学习·算法·目标检测·计算机视觉·大模型·具身智能
fashion 道格1 小时前
深入理解队列的艺术
数据结构·算法
大白IT1 小时前
第四部分:决策规划篇——汽车的“大脑”(第8章:行为决策——车辆的“驾驶策略师”)
人工智能·算法·机器学习
minji...1 小时前
C++ AVL树(二叉平衡搜索树)的概念讲解与模拟实现
数据结构·c++·b树·算法·avl
CNRio2 小时前
ZUC国密算法深度研究:原理、实现与应用(Python、Rust)
python·算法·rust
星期天22 小时前
【无标题】
数据结构·c++·算法
老李四2 小时前
Java 内存分配与回收策略
java·jvm·算法
做怪小疯子3 小时前
LeetCode 热题 100——普通数组——除自身以外数组的乘积
数据结构·算法·leetcode
稚辉君.MCA_P8_Java3 小时前
DeepSeek Java 插入排序实现
java·后端·算法·架构·排序算法