期货赫兹量化-种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES

进化策略(Evolution Strategies, ES)是一种启发式算法,旨在模仿自然选择的过程来解决复杂的优化问题,尤其在没有显式解、或搜索空间巨大的情况下表现良好。基于自然界的进化原理,进化策略通过突变、选择等遗传算子迭代生成解,并最终寻求全局最优解。

进化策略通常基于两个核心机制:突变和选择。突变是对当前解进行随机扰动,而选择则用于保留适应度更高的个体。本文详细介绍了 (μ,λ)-ES 和 (μ+λ)-ES 两种主要的进化策略变体。

主要变体

  1. (1+1)-ES:

    • 这是最简单的变体,适用于小规模问题。
    • 每次只创建一个后代,与当前解进行比较,保留最优者。
    • 由于仅依赖一个突变解,因此在高维问题上表现不佳。
  2. (μ,λ)-ES:

    • 该变体每次生成 λ 个后代,并从中选择最优的 μ 个后代作为下一代的亲本。
    • 亲本会在每一代被完全替换,促进了对解空间的全面探索。
    • 该方法有助于避免过早收敛,适用于更复杂的问题。
  3. (μ+λ)-ES:

    • 类似于 (μ,λ)-ES,但亲本和后代共同参与竞争。
    • 该方法允许最佳的亲本保留到下一代,保持多样性,同时进一步探索局部和全局解。

优化方法

进化策略可以通过引入重组进一步优化。重组允许多个亲本的遗传信息结合到同一个后代中,从而提升群体的多样性和适应性。这使得进化策略能够更有效地搜索解空间,找到比单一突变更优的解。

在典型的 (μ,λ)-ES 算法中,每一代群体会完全替换为新的后代,而 (μ+λ)-ES 则允许亲本和后代之间的竞争。由于 (μ+λ)-ES 结合了亲本和后代的优势,其收敛性通常优于 (μ,λ)-ES。

伪代码示例

(μ,λ)-ES:

复制代码

text

复制代码

1. 初始化一个随机个体的群体。 2. 重复直到满足停止条件: 2.1 对每个亲本使用突变操作生成 λ 个后代。 2.2 选择 λ 个后代中的最佳 μ 个组成新的亲本群体。 3. 返回最优解。

(μ+λ)-ES:

复制代码

text

复制代码

1. 初始化一个随机个体的群体。 2. 重复直到满足停止条件: 2.1 对每个亲本使用突变操作生成 λ 个后代。 2.2 将亲本与后代合并,选择最优的 μ 个个体作为新的亲本群体。 3. 返回最优解。

通过对 (μ,λ)-ES 添加重组,可以在每一代生成的后代中加入更多的多样性,这将进一步提高算法的搜索效率。在复杂多维问题上,重组可以避免算法陷入局部最优解,从而有助于找到全局最优解。

总结

进化策略算法通过模拟自然选择和进化过程,利用遗传算子如突变和重组来生成优化解。它们尤其适用于复杂的多维优化问题。

相关推荐
充值修改昵称29 分钟前
数据结构基础:B树磁盘IO优化的数据结构艺术
数据结构·b树·python·算法
程序员-King.7 小时前
day158—回溯—全排列(LeetCode-46)
算法·leetcode·深度优先·回溯·递归
月挽清风8 小时前
代码随想录第七天:
数据结构·c++·算法
小O的算法实验室8 小时前
2026年AEI SCI1区TOP,基于改进 IRRT*-D* 算法的森林火灾救援场景下直升机轨迹规划,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
小郭团队8 小时前
2_1_七段式SVPWM (经典算法)算法理论与 MATLAB 实现详解
嵌入式硬件·算法·硬件架构·arm·dsp开发
充值修改昵称9 小时前
数据结构基础:从二叉树到多叉树数据结构进阶
数据结构·python·算法
Deepoch9 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
浅念-9 小时前
C语言小知识——指针(3)
c语言·开发语言·c++·经验分享·笔记·学习·算法
Hcoco_me10 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人
BHXDML10 小时前
第九章:EM 算法
人工智能·算法·机器学习