向量——通俗地解释

1. 向量

向量是一个既有大小(模)又有方向 的对象,它可以用来描述空间中的位置、力或速度等量。我们可以从物理、数学和计算机的角度来看待向量,这三种观点看似不同却有关联。

(1)在物理专业视角下,向量是空间中的箭头,决定一个向量的是它的长度(大小)和它所指的方向 。处在平面中的向量是二维的,而处在我们所生活的空间中的向量是三维的。

(2)在计算机专业视角下,向量是有序的数字列表,例如二维向量 x = [ 1 , 2 ] \boldsymbol{x}=[1,2] x=[1,2]。

(3)在数学专业视角下,向量可以是任何东西,只要保证两个向量相加以及数字与向量相乘是有意义的即可。向量加法与向量数乘贯穿线性代数始终,二者起着很重要的作用。

2. 向量是有序的数字列表

(1)在二维空间中(X-Y平面),我们通常以原点(也就是坐标(0,0))作为起点,一个向量的坐标由"两个数"组成。而这"两个数"表示:如何从原点(向量起点)出发到达它的尖端(向量终点)。例如,二维向量 x = [ 2 , 4 ] \boldsymbol{x}=[2,4] x=[2,4],向量通常使用方括号([])括起来。对于二维向量 x = [ x 0 , y 0 ] \boldsymbol{x}=[x_0,y_0] x=[x0,y0],第一个数 x 0 x_0 x0 表示向量沿着 X X X 轴能走多远;第二个数 y 0 y_0 y0 表示向量沿着 Y Y Y 轴能走多远。数 x 0 x_0 x0 和 y 0 y_0 y0的正负表示向量移动的方向,"正数" 表示向着"X-Y"的正半轴移动,"负数"表示向着"X-Y"的负半轴移动。每"一对数"给出唯一的一个二维向量,而每一个二维向量恰好对应唯一的"一对数"。

(2)在三维空间中(X-Y-Z)中,我们通常也以原点(也就是坐标(0,0,0))作为起点,每个向量由一对三元组构成,例如三维向量 x = [ 2 , 4 , 6 ] \boldsymbol{x}=[2,4,6] x=[2,4,6]。对于三维向量 x = [ x 0 , y 0 , z 0 ] \boldsymbol{x}=[x_0,y_0,z_0] x=[x0,y0,z0],第一个数 x 0 x_0 x0 表示向量沿着 X X X 轴能走多远;第二个数 y 0 y_0 y0 表示向量沿着 Y Y Y 轴能走多远;第三个数 z 0 z_0 z0 表示向量沿着 Z Z Z 轴能走多远。每个"三元组"给出唯一的一个三维向量,而每个三维向量恰好对应唯一的"三元组"。

(3)当向量空间的维度超过三维时,我们直观上是想象不到的,但仍然可以使用数字来表示多维向量。例如:四维向量 x = [ 2 , 4 , 6 , 8 ] \boldsymbol{x}=[2,4,6,8] x=[2,4,6,8],六维向量 x = [ 2 , 4 , 6 , 8 , 10 , 12 ] \boldsymbol{x}=[2,4,6,8,10,12] x=[2,4,6,8,10,12]。由此可以得到 n n n 维向量 x \boldsymbol{x} x 的表示形式为: x = [ x 0 , x 1 , x 2 , ... , x n ] \boldsymbol{x}=[x_0,x_1,x_2,\ldots ,x_n] x=[x0,x1,x2,...,xn] 。

3 通俗解释:向量加法与向量数乘

3.1 向量加法

(1)使用二维坐标系(X-Y)来解释向量的加法

从下图一可以看出:向量 v = [ 1 , 2 ] \boldsymbol{v}=[1,2] v=[1,2],向量 w = [ 3 , − 1 ] \boldsymbol{w}=[3,-1] w=[3,−1]。


图1 二维向量 v 和 w

接下来我们对二维向量 v \boldsymbol{v} v 和 w \boldsymbol{w} w 进行相加。具体而言,相加之后的向量就是从第一个向量出发,指向第二向量的终点,两个向量之和( v + w \boldsymbol{v}+\boldsymbol{w} v+w)的表示如下图2所示。由下图2可以看出 v + w = [ 4 , 1 ] \boldsymbol{v}+\boldsymbol{w}=[4,1] v+w=[4,1] ,而向量 v \boldsymbol{v} v和 w \boldsymbol{w} w按元素累加可得: [ 4 , 1 ] [4,1] [4,1],也就是说:向量的加法就是对应坐标位置的元素进行累加。


图2 向量加法

(2)向量加法的通俗解释

我们可以把每个向量看成是一种特定的运动,即在空间中朝着一个方向迈出一定距离。对于上图2中的向量加法,我们先沿着第一个向量 v \boldsymbol{v} v 的方向进行运动,然后再按照第二个向量 w \boldsymbol{w} w 的方向进行移动。其实这两次的总体运动效果就等价于从原点出发,沿着向量 v + w \boldsymbol{v}+\boldsymbol{w} v+w的方向进行运动。

更通俗地来讲,你可以把向量 v + w \boldsymbol{v}+\boldsymbol{w} v+w看成从原点出发,先向右走1步,再往上移动2步,接着往右移动3步,最后向下移动1步。或者也可以看作从原点出发,先向右走4步,再向上移动1步。这也就证明了: v + w = [ 1 , 2 ] + [ 3 , − 1 ] = [ 1 + 3 , 2 − 1 ] = [ 4 , 1 ] \boldsymbol{v}+\boldsymbol{w}=[1,2]+[3,-1]=[1+3,2-1]=[4,1] v+w=[1,2]+[3,−1]=[1+3,2−1]=[4,1]。

3.2 向量数乘

假设 v = [ 3 , 1 ] \boldsymbol{v}=[3,1] v=[3,1],那么 2 v = [ 2 × 3 , 2 × 1 ] = [ 6 , 2 ] 2\boldsymbol{v}=[2×3,2×1]=[6,2] 2v=[2×3,2×1]=[6,2],如下图3所示。

图3 向量数乘1

由图3可知, 2 v 2\boldsymbol{v} 2v相当于把向量 v \boldsymbol{v} v 拉长为原来的2倍。如果是 1 3 v = [ 1 3 × 3 , 1 3 × 1 ] = [ 1 , 1 3 ] \frac{1}{3}\boldsymbol{v}=[\frac{1}{3}×3,\frac{1}{3}×1]=[1,\frac{1}{3}] 31v=[31×3,31×1]=[1,31],那么就相当于把向量 v \boldsymbol{v} v 缩短为原来的 1 3 \frac{1}{3} 31,如下图4所示。

图4 向量数乘2

当一个向量与一个负数相乘时,例如 − 1.8 v = [ − 1.8 × 3 , − 1.8 × 1 ] = [ − 5.4 , − 1.8 ] -1.8\boldsymbol{v}=[-1.8×3,-1.8×1]=[-5.4,-1.8] −1.8v=[−1.8×3,−1.8×1]=[−5.4,−1.8],表示首先这个向量 v \boldsymbol{v} v 先反向,然后伸长为原来的1.8倍,其运算结果如下图5所示。


图5 向量数乘3

上述的这种拉伸或者压缩,有时又使向量反向的过程被称为缩放。

参考视频:【熟肉】线性代数的本质 - 01 - 向量究竟是什么?

相关推荐
麦麦大数据10 分钟前
Python棉花病虫害图谱系统CNN识别+AI问答知识neo4j vue+flask深度学习神经网络可视化
人工智能·python·深度学习
段传涛11 分钟前
PAL(Program-Aided Language Model)
人工智能·语言模型·自然语言处理
声网13 分钟前
实时多模态 AI 的 N 种新可能丨实时互动和大模型专场@RTE2024回顾
人工智能·实时互动
魔珐科技15 分钟前
以3D数字人AI产品赋能教育培训人才发展,魔珐科技亮相AI+教育创新与人才发展大会
大数据·人工智能
weixin_4432906915 分钟前
【阅读记录-章节3】Build a Large Language Model (From Scratch)
人工智能·语言模型·自然语言处理
算家云20 分钟前
快速识别模型:simple_ocr,部署教程
开发语言·人工智能·python·ocr·数字识别·检测模型·英文符号识别
youcans_1 小时前
【微软:多模态基础模型】(5)多模态大模型:通过LLM训练
人工智能·计算机视觉·大模型·大语言模型·多模态
飞凌嵌入式1 小时前
飞凌嵌入式T113-i开发板RISC-V核的实时应用方案
人工智能·嵌入式硬件·嵌入式·risc-v·飞凌嵌入式
sinovoip1 小时前
Banana Pi BPI-CanMV-K230D-Zero 采用嘉楠科技 K230D RISC-V芯片设计
人工智能·科技·物联网·开源·risc-v