【动手学深度学习】05 线性代数(个人向笔记)

1. 线性代数

向量的一些公式

  • ∣ ∣ a ∣ ∣ ||a|| ∣∣a∣∣ 表示向量 a 的范数,课上没有讲范数的概念

  • 其中第一条为求向量的二范数

  • 第四条表示如果a为标量,那么向量 ∣ ∣ a ⋅ b ∣ ∣ ||a·b|| ∣∣a⋅b∣∣ 的长度等于 ∣ a ∣ ⋅ ∣ ∣ b ∣ ∣ |a|·||b|| ∣a∣⋅∣∣b∣∣ 的长度

矩阵

矩阵的一个比较重要的范数:

对称矩阵的转置等于其本身

特征向量

对于一个矩阵来说,如果它乘以一个向量后该向量的方向未改变,那么这个向量被称为特征向量。代替这个矩阵的值被称为特征值:

碎碎念

这部分个人感觉就是讲一些比较生硬的概念,这部分我只把我觉得可能会重要一些的内容记下来了。如果后续再遇到了这些内的话再去查阅资料就行了


2. 线性代数的实现

  • 标量由只有一个元素的张量表示
  • 向量就是由标量值组成的列表,可以通过索引访问元素
  • 可以通过 len 来返回张量的长度,shape 来返回张量的形状
  • 可以用 T 来转置一个矩阵
  • 可以通过 clone 来分配新内存来复制
  • 矩阵和标量相加相当于给标量每个元素加上该标量,相乘同理
  • 可以通过 sum() 来获取总和,可以指定维度,还可以通过 mean() 来求平均值,同样可以指定维度
  • 可以在计算总和时保持维度不变

  • 假如参数为False会怎么样呢
  • cumsum 可以进行累加求和

  • 可以用 torch.dot 来计算元素的点积,也可以先按位乘然后求和来计算点积
  • 视频中有 torch.mv 但是没有解释,还好我有gpt


  • 可以用 torch.norn() 求二范数
  • 求L1范数需要先取绝对值后求和

按特定轴求和

  • 假设有一个五行四列的矩阵,shape 为 [5, 4] ,那么其中的 axis 对应就分别为 0, 1,意思是按列的 axis 为 0 ,按行的 axis 为 1
  • 如果按 axis = 0 求和,那么就会把 5 这一维消掉,如果按 axis = 1 求和,那么就会把 4 这一维消掉。但是如果 keepdims=True 还是可以保留维度的,只不过把它变成1,比如 [1, 4] 或者 [5, 1]。总结就是按哪一维求和就消掉哪个维度。
  • 可以对多个维度求和,结果和上面的描述相同
相关推荐
Yawesh_best9 小时前
告别系统壁垒!WSL+cpolar 让跨平台开发效率翻倍
运维·服务器·数据库·笔记·web安全
Ccjf酷儿11 小时前
操作系统 蒋炎岩 3.硬件视角的操作系统
笔记
习习.y12 小时前
python笔记梳理以及一些题目整理
开发语言·笔记·python
在逃热干面12 小时前
(笔记)自定义 systemd 服务
笔记
编程小白_正在努力中13 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海13 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
DKPT13 小时前
ZGC和G1收集器相比哪个更好?
java·jvm·笔记·学习·spring
QT 小鲜肉15 小时前
【孙子兵法之上篇】001. 孙子兵法·计篇
笔记·读书·孙子兵法
H***997615 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
星轨初途16 小时前
数据结构排序算法详解(5)——非比较函数:计数排序(鸽巢原理)及排序算法复杂度和稳定性分析
c语言·开发语言·数据结构·经验分享·笔记·算法·排序算法