【Python爬虫】利用爬虫抓取双色球开奖号码,获取完整数据并通过随机森林和多层感知两种模型进行简单的预测

首先我们需要通过爬虫获取往期双色球号码并将其保存在csv文件中,这里我获取了1000期的数据,时间很久,大家可以修改代码少收集一些做尝试!

python 复制代码
import requests
import os
from bs4 import BeautifulSoup
import csv
import time

def download(url, page):
    while True:
        try:
            html = requests.get(url).text
            soup = BeautifulSoup(html, 'html.parser')
            list = soup.select('div.ball_box01 ul li')
            ball = []
            for li in list:
                ball.append(li.string)
            if not ball:
                raise ValueError("Empty data")
            write_to_excel(page, ball)
            print(f"第{page}期开奖结果录入完成")
            break
        except Exception as e:
            print(f"Attempt failed with error: {e}, retrying...")
            time.sleep(5)  # 等待5秒后重试

def write_to_excel(page, ball):
    with open('双色球开奖结果2.csv', 'a', encoding='utf_8_sig', newline='') as f:
        writer = csv.writer(f)
        writer.writerow([f'第{page}期'] + ball)

def turn_page():
    url = "https://kaijiang.500.com/ssq.shtml"
    html = requests.get(url).text
    soup = BeautifulSoup(html, 'html.parser')
    pageList = soup.select("div.iSelectList a")

    recent_pages = pageList[:1000]  # 获取最近1000期的页码

    for p in recent_pages:
        url = p['href']
        page = p.string
        download(url, page)

def main():
    if os.path.exists('双色球开奖结果2.csv'):
        os.remove('双色球开奖结果2.csv')
    turn_page()

if __name__ == '__main__':
    main()

这里是随机森林预测

python 复制代码
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor

# 读取数据
data = pd.read_csv('双色球开奖结果2.csv')  # ,encoding='gbk'

# 提取特征和标签
features = data.iloc[:, 1:7]  # 红色球特征
labels = data.iloc[:, 1:7]  # 红色球标签
blue_balls = data.iloc[:, 7]  # 蓝色球标签

# 创建随机森林回归模型
model = RandomForestRegressor(n_estimators=100, random_state=1)

# 拟合模型
model.fit(features, labels)

# 预测下一期的红色球号码
next_red_balls = model.predict(features.iloc[-1].values.reshape(1, -1))
next_red_balls = np.round(next_red_balls).astype(int)

# 预测下一期的蓝色球号码
blue_ball_model = RandomForestRegressor(n_estimators=100, random_state=1)
blue_ball_model.fit(features, blue_balls)
next_blue_ball = blue_ball_model.predict(features.iloc[-1].values.reshape(1, -1))
next_blue_ball = np.round(next_blue_ball).astype(int)

# 打印预测的红色球号码和蓝色球号码
print("预测的红色球号码:", next_red_balls)
print("预测的蓝色球号码:", next_blue_ball)

多层感知

python 复制代码
import pandas as pd
import numpy as np
from sklearn.neural_network import MLPRegressor

# 读取数据
data = pd.read_csv('双色球开奖结果2.csv')  # , encoding='gbk'

# 提取特征和标签
features = data.iloc[:, 1:7]  # 红色球特征
labels = data.iloc[:, 1:8]  # 红色球标签和蓝色球标签

# 创建多层感知机回归模型
model = MLPRegressor(hidden_layer_sizes=(100,), random_state=1)

# 拟合模型
model.fit(features, labels)
# 预测下一期的红色球号码和蓝色球号码
next_features = model.predict(features.iloc[[-1]])
next_features = np.round(next_features).astype(int)

# 打印预测的红色球号码和蓝色球号码
print("预测的红色球号码:", next_features[:6])
print("预测的蓝色球号码:", next_features[6])

杰哥这里仅做了简单的预测,闲暇时间无聊做的,大家想要更精确的结果需要更精细的调参!

相关推荐
冷雨夜中漫步4 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴5 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再5 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
李慕婉学姐5 小时前
【开题答辩过程】以《基于社交网络用户兴趣大数据分析》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
数据挖掘·数据分析
喵手7 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934737 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy7 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
肖永威8 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ8 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
枷锁—sha9 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全