TaskingAI实践(一)快速上手

TaskingAI实践-20240912:

20240912 写在前面 我们一直走一直看,路过的风景,一闪而过的瞬间,终究还是会留下瞬间印记。不学习不代表它不存在,学习了不代表它就直接可以用,不用不代表它没有用。说到最深处,人生就是一场体验。

TaskingAI:

TaskingAI 是一个基于大语言模型 (LLM) 的开发与部署平台,提供统一的 API 接入数百个 AI 模型,并通过直观的用户界面管理功能模块,如工具、RAG 系统、助手等。其主要特点包括一键部署、异步高效处理、集成各种 LLM 模型和插件。支持状态和无状态的使用方式,帮助开发者轻松构建多租户 AI 应用。通过 Docker 快速启动,也提供 SDK 与 API 进行编程交互。

更多信息可以查看TaskingAI

快速上手Quickstart with Docker

A simple way to initiate self-hosted TaskingAI community edition is through Docker.

前置环境准备Prerequisites

  • Docker环境,Docker and Docker Compose installed on your machine.
  • GIT环境,Git installed for cloning the repository.
  • Python环境>3.8,Python environment (above Python 3.8) for running the client SDK.

安装 Installation

从GitHub下载项目源代码

First, clone the TaskingAI (community edition) repository from GitHub.

复制代码
git clone https://github.com/taskingai/taskingai.git
cd taskingai

进入到项目仓库,进入到docker目录,

Inside the cloned repository, go to the docker directory.

复制代码
cd docker
  1. Copy .env.example to .env:

    复制代码
    cp .env.example .env
  2. Edit the .env file : Open the .env file in your favorite text editor and update the necessary configurations. Ensure all required environment variables are set correctly.

  3. Start Docker Compose: Run the following command to start all services:

    复制代码
    docker-compose -p taskingai --env-file .env up -d

项目启动后直接访问, http://localhost:8080。默认用户名和密码是 admin and TaskingAI321.

Once the service is up, access the TaskingAI console through your browser with the URL http://localhost:8080. The default username and password are admin and TaskingAI321.

升级操作 Upgrade

If you have already installed TaskingAI with a previous version and want to upgrade to the latest version, first update the repository.

复制代码
git pull origin master

Then stop the current docker service, upgrade to the latest version by pulling the latest image, and finally restart the service.

复制代码
cd docker
docker-compose -p taskingai down
docker-compose -p taskingai pull
docker-compose -p taskingai --env-file .env up -d

Don't worry about data loss; your data will be automatically migrated to the latest version schema if needed.


问题:

8080端口占用

实践遇到的docker端口占用问题,当然和taskingAI本身无关,是环境问题,解决端口冲突即可。

bash 复制代码
➜  docker git:(master) pwd
/Users/zhizhou/Documents/docker_home/taskingai/docker

➜  docker git:(master) docker-compose -p taskingai --env-file .env up -d
[+] Running 7/8
 ⠿ Container taskingai-cache-1              Running                                            0.0s
 ⠿ Container taskingai-db-1                 Running                                            0.0s
 ⠿ Container taskingai-backend-inference-1  Start...                                          21.0s
 ⠿ Container taskingai-backend-plugin-1     Started                                           21.0s
 ⠿ Container taskingai-backend-web-1        Started                                           11.2s
 ⠿ Container taskingai-backend-api-1        Started                                           11.2s
 ⠿ Container taskingai-frontend-1           Started                                            1.3s
 ⠿ Container taskingai-nginx-1              Starting                                           1.2s
Error response from daemon: Ports are not available: exposing port TCP 0.0.0.0:8080 -> 0.0.0.0:0: listen tcp 0.0.0.0:8080: bind: address already in use

上述终端表示 端口被占用,检查一下是否有正在启动的Java程序 或者直接查看端口8080的使用情况。

bash 复制代码
➜  docker git:(master) lsof -i:8080
COMMAND   PID    USER   FD   TYPE             DEVICE SIZE/OFF NODE NAME
java    45590 zhizhou   96u  IPv6 0x717191f587125ef1      0t0  TCP *:http-alt (LISTEN)
➜  docker git:(master) lsof -i:8080
➜  docker git:(master) docker-compose -p taskingai up -d                   
[+] Running 8/8
 ⠿ Container taskingai-cache-1              Running                                            0.0s
 ⠿ Container taskingai-db-1                 Running                                            0.0s
 ⠿ Container taskingai-backend-plugin-1     Running                                            0.0s
 ⠿ Container taskingai-backend-inference-1  Runni...                                           0.0s
 ⠿ Container taskingai-backend-web-1        Running                                            0.0s
 ⠿ Container taskingai-backend-api-1        Started                                            0.2s
 ⠿ Container taskingai-frontend-1           Running                                            0.0s
 ⠿ Container taskingai-nginx-1              Started                                            0.3s
➜  docker git:(master) 

相关文档

github:

https://github.com/TaskingAI/TaskingAI?tab=readme-ov-file

首页

https://tasking.ai/

API文档

https://docs.tasking.ai/api/

相关推荐
独立开阀者_FwtCoder28 分钟前
Cursor 1.0 重磅发来袭(毛骨悚然,开始学习你如何编码)
前端·javascript·github
几道之旅29 分钟前
gitcode与github加速计划
github·gitcode
幼稚园的山代王3 小时前
Prompt Enginering(提示工程)先进技术
java·人工智能·ai·chatgpt·langchain·prompt
wang_yb3 小时前
概率图模型:机器学习的结构化概率之道
ai·databook
WindrunnerMax3 小时前
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
前端·架构·github
程序员鱼皮3 小时前
我做了个 AI 高考分数预测器,这次终于能上清华了!
计算机·ai·互联网
寻月隐君5 小时前
探索Web3新速度:Sonic高性能Layer-1上的BlindAuction智能合约实践
后端·web3·github
油泼辣子多加5 小时前
2025年06月07日Github流行趋势
github
Moment5 小时前
给大家推荐一个超好用的 Marsview 低代码平台 🤩🤩🤩
前端·javascript·github
独立开阀者_FwtCoder6 小时前
stagewise:让AI与代码编辑器无缝连接
前端·javascript·github