tensor连接和拆分

文章目录

连接

torch.cat()

函数目的: 在给定维度上对输入的张量序列 进行连接操作。

案例准备
python 复制代码
a = torch.tensor([[1,2,3],[4,5,6],[7,8,9]], dtype=torch.float)
b = torch.tensor([[10,10,10,],[10,10,10],[10,10,10,]], dtype=torch.float)
python 复制代码
# dim指的是维度,dim = 0就是行,所以下面的代码就是按行拼接
print("按行拼接:\n",torch.cat((a,b),dim=0))
print("按行拼接:\n",torch.cat((a,b),dim=0).shape) #6行3列
python 复制代码
print("按列拼接:\n",torch.cat((a,b),dim=1))
print("按列拼接:\n",torch.cat((a,b),dim=1).shape)#3行6列

torch.stack()

沿着一个新维度对输入张量序列进行连接。 序列中所有的张量都应该为相同 形状。

也就是2维拼成3维,3维拼4维,以此类推。

python 复制代码
print("按行拼接:\n",torch.stack((a,b),dim=0))
print("按行拼接:\n",torch.stack((a,b),dim=0).shape) 
python 复制代码
print("按行拼接:\n",torch.stack((a,b),dim=1))
print("按行拼接:\n",torch.stack((a,b),dim=1).shape)
python 复制代码
print("按行拼接:\n",torch.stack((a,b),dim=2))
print("按行拼接:\n",torch.stack((a,b),dim=2).shape)
区别

stack与cat的区别在于,torch.stack()函数要求输入张量的大小完全相同,得到的张量的维度会比输入的张量的大小多1,并且多出的那个维度就是拼接的维度,那个维度的大小就是输入张量的个数。

python 复制代码
c = torch.tensor([[10,20],[30,40],[50,60]], dtype=torch.float)
a = torch.tensor([[1,2,3],[4,5,6],[7,8,9]], dtype=torch.float)
torch.cat((a,c),dim=1)
python 复制代码
#但是以下情况就会出错
torch.cat((a,c),dim=0)

如图,按行拼接会缺数据,报错吗,应该的。

python 复制代码
torch.stack((a,c),dim=0)
###运行结果
RuntimeError: stack expects each tensor to be equal size, but got [3, 3] at entry 0 and [3, 2] at entry 1

再次验证stack需要两个大小一样的张量

拆分

torch.split()

def split(

tensor: Tensor, split_size_or_sections: Union[int, List[int]], dim: int = 0

) -> Tuple[Tensor, ...]:

  • 按块大小拆分张量 除不尽的取余数,返回一个元组
python 复制代码
a = torch.tensor([[1,2,3],[4,5,6],[7,8,9]], dtype=torch.float)
print(torch.split(a,2,dim=0))	#按行拆,两行拆成一个
print(torch.split(a,1,dim=0))	#按行拆,一行拆成一个
print(torch.split(a,1,dim=1))	#按列拆,一列拆成一个
print(torch.split(a,2,dim=1)) 	#按列拆,两列拆成一个
  • 按块数拆分张量
python 复制代码
torch.chunk(a,2,dim=0)	#按行拆成两块
torch.split(a,2,dim=1)	#按列拆成两块
相关推荐
隐语SecretFlow7 小时前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo8 小时前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈8 小时前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy8 小时前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
九章云极AladdinEdu15 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡18 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有20 小时前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社20 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
七元权1 天前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计
ViperL11 天前
[智能算法]可微的神经网络搜索算法-FBNet
人工智能·深度学习·神经网络