python学习——对无人机影像有RGB转换到HSV

问题描述

最近需要对无人机影像中绿色植被信息进行提取,查看相关论文,发现用的比较多的就是HSV色彩转换方法,动手实践一下。

解决思路

HSV转换 直方图确定阈值 掩膜提取

解决过程

HSV转换

python 复制代码
import os
import numpy as np
from osgeo import gdal
'''
本代码实现将RGB波段的无人机影像转换到HSV色彩空间。
注意无人机影像波段顺序为R,G,B
'''
def RGB2HSV(file):

    src = gdal.Open(file)
    col = src.RasterXSize
    row = src.RasterYSize
    _ = 3
    red = np.array(src.GetRasterBand(1).ReadAsArray().astype(float))
    green = np.array(src.GetRasterBand(2).ReadAsArray().astype(float))
    blue = np.array(src.GetRasterBand(3).ReadAsArray().astype(float))
    arr = np.stack((red, green, blue), axis=2)
    dst = np.zeros((row, col, 3), dtype=np.float32)
    for i in range(row):
        for j in range(col):
            r, g, b = arr[i, j] / 255.0
            minn = np.min([r, g, b])
            maxx = np.max([r, g, b])
            dst[i, j, 2] = maxx  # V
            delta = maxx - minn
            h, s = 0, 0
            if maxx != 0:
                s = delta / maxx
            if r == maxx:
                h = (g - b) / delta
            elif g == maxx:
                h = 2 + (b - r) / delta
            else:
                h = 4 + (r - g) / delta
            h *= 60
            if h < 0:
                h += 360
            dst[i, j, 0] = h
            dst[i, j, 1] = s
    print('开始输出')
    out_name = 'hsv.tif'
    out_ds = gdal.GetDriverByName('GTiff').Create(out_name, col, row, 3, gdal.GDT_Float32)
    for i in range(3):
        # data = out_ds.GetRasterBand(i+1).ReadAsArray()
        band = out_ds.GetRasterBand(i+1).WriteArray(dst[:,:,i])
        del band

    out_ds.SetProjection(src.GetProjection())
    out_ds.SetGeoTransform(src.GetGeoTransform())
    out_ds.FlushCache()
    return out_ds

file = r'G:\temp\forestVFC\标注影像\ZJM_ZLHF_2308221.dat'

# Convert to HSV
dst = RGB2HSV(file)

直方图查看

原结果如下:

HSV结果如下所示:

查看HSV结果波段1的直方图

我这里的需求是分为植被和非植被,查看直方图中第一个波谷的折点即为植被和非植被区域阈值,也就是下图中的28.1115

掩膜提取

在ENVI------bandmath中使用下面这个公式对原始结果进行掩膜即可得到绿色植被区域的影像。

IDL 复制代码
(float(b1) ge 28.0 ) * float(b2)
# b1 为HSV影像的波段1,b2为原始无人机影像

参考:

https://blog.csdn.net/u012294613/article/details/141096007

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

相关推荐
Ratten12 分钟前
【Python 实战】---- 实现一个可选择、配置操作的批量文件上传工具(三)上传类的实现
python
Coovally AI模型快速验证15 分钟前
SOD-YOLO:基于YOLO的无人机图像小目标检测增强方法
人工智能·yolo·目标检测·机器学习·计算机视觉·目标跟踪·无人机
楚韵天工18 分钟前
基于GIS的无人机模拟飞行控制系统设计与实现
深度学习·算法·深度优先·无人机·广度优先·迭代加深·图搜索算法
阿里云大数据AI技术1 小时前
【跨国数仓迁移最佳实践6】MaxCompute SQL语法及函数功能增强,10万条SQL转写顺利迁移
python·sql
杜子不疼.1 小时前
《Python学习之文件操作:从入门到精通》
数据库·python·学习
微小的xx1 小时前
java + html 图片点击文字验证码
java·python·html
金色旭光2 小时前
uv 现代化的虚拟环境管理工具
python·python进阶
赞哥哥s2 小时前
Python脚本开发-统计Rte中未连接的Port
python·autosar·rte
Franklin2 小时前
Python界面设计【QT-creator基础编程 - 01】如何让不同分辨率图像自动匹配graphicsView的窗口大小
开发语言·python·qt
waynaqua2 小时前
FastAPI开发AI应用三:添加深度思考功能
python·openai·deepseek