python学习——对无人机影像有RGB转换到HSV

问题描述

最近需要对无人机影像中绿色植被信息进行提取,查看相关论文,发现用的比较多的就是HSV色彩转换方法,动手实践一下。

解决思路

HSV转换 直方图确定阈值 掩膜提取

解决过程

HSV转换

python 复制代码
import os
import numpy as np
from osgeo import gdal
'''
本代码实现将RGB波段的无人机影像转换到HSV色彩空间。
注意无人机影像波段顺序为R,G,B
'''
def RGB2HSV(file):

    src = gdal.Open(file)
    col = src.RasterXSize
    row = src.RasterYSize
    _ = 3
    red = np.array(src.GetRasterBand(1).ReadAsArray().astype(float))
    green = np.array(src.GetRasterBand(2).ReadAsArray().astype(float))
    blue = np.array(src.GetRasterBand(3).ReadAsArray().astype(float))
    arr = np.stack((red, green, blue), axis=2)
    dst = np.zeros((row, col, 3), dtype=np.float32)
    for i in range(row):
        for j in range(col):
            r, g, b = arr[i, j] / 255.0
            minn = np.min([r, g, b])
            maxx = np.max([r, g, b])
            dst[i, j, 2] = maxx  # V
            delta = maxx - minn
            h, s = 0, 0
            if maxx != 0:
                s = delta / maxx
            if r == maxx:
                h = (g - b) / delta
            elif g == maxx:
                h = 2 + (b - r) / delta
            else:
                h = 4 + (r - g) / delta
            h *= 60
            if h < 0:
                h += 360
            dst[i, j, 0] = h
            dst[i, j, 1] = s
    print('开始输出')
    out_name = 'hsv.tif'
    out_ds = gdal.GetDriverByName('GTiff').Create(out_name, col, row, 3, gdal.GDT_Float32)
    for i in range(3):
        # data = out_ds.GetRasterBand(i+1).ReadAsArray()
        band = out_ds.GetRasterBand(i+1).WriteArray(dst[:,:,i])
        del band

    out_ds.SetProjection(src.GetProjection())
    out_ds.SetGeoTransform(src.GetGeoTransform())
    out_ds.FlushCache()
    return out_ds

file = r'G:\temp\forestVFC\标注影像\ZJM_ZLHF_2308221.dat'

# Convert to HSV
dst = RGB2HSV(file)

直方图查看

原结果如下:

HSV结果如下所示:

查看HSV结果波段1的直方图

我这里的需求是分为植被和非植被,查看直方图中第一个波谷的折点即为植被和非植被区域阈值,也就是下图中的28.1115

掩膜提取

在ENVI------bandmath中使用下面这个公式对原始结果进行掩膜即可得到绿色植被区域的影像。

IDL 复制代码
(float(b1) ge 28.0 ) * float(b2)
# b1 为HSV影像的波段1,b2为原始无人机影像

参考:

https://blog.csdn.net/u012294613/article/details/141096007

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

相关推荐
肥猪猪爸4 分钟前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
LZXCyrus33 分钟前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
Enougme36 分钟前
Appium常用的使用方法(一)
python·appium
懷淰メ42 分钟前
PyQt飞机大战游戏(附下载地址)
开发语言·python·qt·游戏·pyqt·游戏开发·pyqt5
hummhumm1 小时前
第 22 章 - Go语言 测试与基准测试
java·大数据·开发语言·前端·python·golang·log4j
hummhumm1 小时前
第 28 章 - Go语言 Web 开发入门
java·开发语言·前端·python·sql·golang·前端框架
每天吃饭的羊2 小时前
python里的数据结构
开发语言·python
卡卡_R-Python2 小时前
UCI Heart Disease Data Set—— UCI 心脏病数据集介绍
python·plotly·django·virtualenv·pygame
饮长安千年月2 小时前
浅谈就如何解出Reverse-迷宫题之老鼠走迷宫的一些思考
python·网络安全·逆向·ctf
好看资源平台2 小时前
网络爬虫——爬虫项目案例
爬虫·python