python学习——对无人机影像有RGB转换到HSV

问题描述

最近需要对无人机影像中绿色植被信息进行提取,查看相关论文,发现用的比较多的就是HSV色彩转换方法,动手实践一下。

解决思路

HSV转换 直方图确定阈值 掩膜提取

解决过程

HSV转换

python 复制代码
import os
import numpy as np
from osgeo import gdal
'''
本代码实现将RGB波段的无人机影像转换到HSV色彩空间。
注意无人机影像波段顺序为R,G,B
'''
def RGB2HSV(file):

    src = gdal.Open(file)
    col = src.RasterXSize
    row = src.RasterYSize
    _ = 3
    red = np.array(src.GetRasterBand(1).ReadAsArray().astype(float))
    green = np.array(src.GetRasterBand(2).ReadAsArray().astype(float))
    blue = np.array(src.GetRasterBand(3).ReadAsArray().astype(float))
    arr = np.stack((red, green, blue), axis=2)
    dst = np.zeros((row, col, 3), dtype=np.float32)
    for i in range(row):
        for j in range(col):
            r, g, b = arr[i, j] / 255.0
            minn = np.min([r, g, b])
            maxx = np.max([r, g, b])
            dst[i, j, 2] = maxx  # V
            delta = maxx - minn
            h, s = 0, 0
            if maxx != 0:
                s = delta / maxx
            if r == maxx:
                h = (g - b) / delta
            elif g == maxx:
                h = 2 + (b - r) / delta
            else:
                h = 4 + (r - g) / delta
            h *= 60
            if h < 0:
                h += 360
            dst[i, j, 0] = h
            dst[i, j, 1] = s
    print('开始输出')
    out_name = 'hsv.tif'
    out_ds = gdal.GetDriverByName('GTiff').Create(out_name, col, row, 3, gdal.GDT_Float32)
    for i in range(3):
        # data = out_ds.GetRasterBand(i+1).ReadAsArray()
        band = out_ds.GetRasterBand(i+1).WriteArray(dst[:,:,i])
        del band

    out_ds.SetProjection(src.GetProjection())
    out_ds.SetGeoTransform(src.GetGeoTransform())
    out_ds.FlushCache()
    return out_ds

file = r'G:\temp\forestVFC\标注影像\ZJM_ZLHF_2308221.dat'

# Convert to HSV
dst = RGB2HSV(file)

直方图查看

原结果如下:

HSV结果如下所示:

查看HSV结果波段1的直方图

我这里的需求是分为植被和非植被,查看直方图中第一个波谷的折点即为植被和非植被区域阈值,也就是下图中的28.1115

掩膜提取

在ENVI------bandmath中使用下面这个公式对原始结果进行掩膜即可得到绿色植被区域的影像。

IDL 复制代码
(float(b1) ge 28.0 ) * float(b2)
# b1 为HSV影像的波段1,b2为原始无人机影像

参考:

https://blog.csdn.net/u012294613/article/details/141096007

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

相关推荐
之歆11 分钟前
Python-封装和解构-set及操作-字典及操作-解析式生成器-内建函数迭代器-学习笔记
笔记·python·学习
天天爱吃肉82181 小时前
ZigBee通信技术全解析:从协议栈到底层实现,全方位解读物联网核心无线技术
python·嵌入式硬件·物联网·servlet
Allen_LVyingbo2 小时前
Python常用医疗AI库以及案例解析(2025年版、上)
开发语言·人工智能·python·学习·健康医疗
智能砖头2 小时前
LangChain 与 LlamaIndex 深度对比与选型指南
人工智能·python
风逸hhh3 小时前
python打卡day58@浙大疏锦行
开发语言·python
烛阴4 小时前
一文搞懂 Python 闭包:让你的代码瞬间“高级”起来!
前端·python
JosieBook4 小时前
【Java编程动手学】Java中的数组与集合
java·开发语言·python
Gyoku Mint5 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
郭庆汝11 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
思则变14 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest