模型部署基础

神经网络的模型部署是将训练好的神经网络模型应用到实际系统中,以实现预测、分类、推荐等任务的过程。下图展示了模型从训练到部署的整个流程:

1.模型部署的平台

  • 在线服务器端部署

在线服务器端部署适用于处理大模型、需要精度优先的应用场景,并且对延迟不敏感的情况。通过服务器端的强大计算资源,可以高效运行复杂模型,确保推理的准确性,而延迟的容忍度使得这些模型能够在不追求即时响应的场景中发挥最佳性能。

  • 离线嵌入式部署

离线嵌入式部署适用于小型模型、对实时性要求高、并且对计算资源和功耗有限的场景。通常在设备端(如移动设备、物联网设备、机器人等)运行模型,不依赖网络连接,适合需要低延迟、高响应速度的应用。这类部署强调模型的轻量化、快速推理和节省资源,常见技术包括模型量化、剪枝等,用于优化模型在资源受限环境中的运行效率。

2.模型部署的方式

常见的模型部署方式主要分为以下四种:

  • 原始训练框架部署

模型在与其训练时相同的框架中直接部署和使用。它保持了模型在开发阶段的完整性,并且能够利用框架提供的高阶API进行推理。适合快速部署,尤其是实验和原型阶段,但可能在性能和优化上不是最佳选择。例如:使用TensorFlow、PyTorch直接部署并进行推理。

  • 训练框架的部署引擎

训练框架提供的专用部署工具或引擎,优化了模型在生产环境中的性能。这些引擎通常包含针对特定硬件或应用场景的优化,可以在保持框架兼容性的同时提高推理速度和效率,但只支持自己训练框架的模型。例如:TF-Lite,Pytorch-Mobile等。

  • 手动模型重构

将模型从原始训练框架导出并手动转换或重构为其他格式,进行定制化的优化部署。适用于跨平台或者特定硬件的优化部署,特别是需要极致的性能优化或资源节省时,开发者可以根据目标环境手动调整和重构模型。例如:将PyTorch模型导出为ONNX格式并手动优化推理代码。

  • 专用的推理引擎

利用专门为推理优化的引擎,这些引擎通常针对特定硬件(如GPU、TPU、嵌入式设备等)进行了高度优化,以最大限度提高推理效率、减少延迟或降低功耗。常常用于需要极高性能、低功耗或部署到硬件受限的场景。例如:NCNN,MNN,Tengine等。主流的移动端推理框架对比如下图

参考:

深度学习之模型部署_哔哩哔哩_bilibili

相关推荐
qzhqbb8 分钟前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨32 分钟前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_8830410834 分钟前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌2 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭2 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246663 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k3 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫3 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班3 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型