【深度学习】修改源码以实现预测整个文件夹和保存txt文件(自用笔记

此笔记是为记录一下,为解决某模型只能预测一张图,并且不能生成相应的txt文件的问题


python 复制代码
def main():
    if os.path.isdir(directory_path):
        files = os.listdir(directory_path)
        for file in files:
            file_path = os.path.join(directory_path, file)
            if os.path.isfile(file_path):
                try:
                    origin_img = np.asarray(Image.open(file_path).convert('RGB'))
                    bboxes = [[1, 2, 3, 4], [5, 6, 7, 8]]
                    scores = [100, 99]
                    cls_inds = [0, 1]
                    vis_res = visualize(origin_img, bboxes, scores, cls_inds, conf=0.6, save_name=os.path.basename(file_path), save_result=True)
                    print(os.path.basename(file_path))
                except Exception as e:
                    print(f"读取文件 {file} 时发生错误:{e}")
    else:
        print(f"{directory_path} 不是一个目录。")
python 复制代码
def visualize(image, bboxes, scores, cls_inds, conf, save_name='vis.jpg', save_result=True):
    # 写入txt文件 一行一行的写入
    vis_img, labels = vis(image, bboxes, scores, cls_inds, conf, class_names)
    img_name = save_name.split('.')[0]
    txt_name = img_name + '.txt'
    if save_result:  # 把已经框好的照片写进去
        save_path = os.path.join(output_dir, save_name)
        print(f"save visualization results at {save_path}")
        save_txt_path = os.path.join(output_dir, txt_name)
        for i in range(len(labels)):
            label = labels[i]
            with open(save_txt_path, 'a') as fp:
                fp.write(label)

        # cv2.imwrite(save_path, vis_img[:, :, ::-1])
    return vis_img
python 复制代码
def vis(img, boxes, scores, cls_ids, conf=0.5, class_names=None):
    # 返回labels数组
    labels = []
    for i in range(len(boxes)):
        box = boxes[i]
        cls_id = int(cls_ids[i])
        score = scores[i]
        if score < conf:
            continue
        x0 = int(box[0])
        y0 = int(box[1])
        x1 = int(box[2])
        y1 = int(box[3])
        x2 = float(box[0])
        y2 = float(box[1])
        x3 = float(box[2])
        y3 = float(box[3])
        score_txt = float(score)

        label = str(x2)+' '+str(y2)+' '+str(x3)+' '+str(y3)+' '+str(score)+' '+str(cls_id)+'\n'
        labels.append(label)
    return img, labels
相关推荐
love530love1 分钟前
Docker 稳定运行与存储优化全攻略(含可视化指南)
运维·人工智能·windows·docker·容器
HeartException27 分钟前
量子计算+AI芯片:光子计算如何重构神经网络硬件生态
人工智能
摸鱼仙人~31 分钟前
Minstrel:多智能体协作生成结构化 LangGPT 提示词
人工智能·提示词
特种加菲猫34 分钟前
指尖上的魔法:优雅高效的Linux命令手册
linux·笔记
wuxuanok1 小时前
Web后端开发-分层解耦
java·笔记·后端·学习
AI街潜水的八角2 小时前
深度学习图像分类数据集—濒危动物识别分类
人工智能·深度学习
安思派Anspire2 小时前
LangGraph + MCP + Ollama:构建强大代理 AI 的关键(一)
前端·深度学习·架构
wuxuanok2 小时前
Web后端开发-请求响应
java·开发语言·笔记·学习
程序员陆通2 小时前
独立开发A/B测试实用教程
人工智能·ai编程
knowfoot2 小时前
硬核拆解!跟着公式“走”一遍,你也能彻底看懂神经网络
人工智能·神经网络