Minstrel:多智能体协作生成结构化 LangGPT 提示词


一、项目概述

Minstrel 是一个基于 LangGPT 框架的多智能体系统,自动生成结构化、人格化的提示词。它通过多个协作代理,提升提示词的准确性、多样性和灵活性,适合非 AI 专家使用 (github.com)。

二、问题动机

  • 当前 LLM 提示设计经验依赖强、规则分散,对非专家学习成本高;
  • 提示词重用和迭代难度大,缺少系统化支持;
  • 为此,LangGPT 提出类编程语言结构设计,Minstrel 则实现自动化生成 (huggingface.co, arxiv.org)。

三、功能亮点

  • 多智能体协同 :Minstrel 分为分析组、设计组和测试组,三方协同完成提示的分析、设计和优化 (medium.com)。
  • 结构化提示生成 :遵循 LangGPT 框架的双层结构(模块 + 元素),系统化组织提示逻辑 (medium.com)。
  • 高效优化能力:经过自动化测试与代理间反思讨论,生成提示经常优于手动设计 。

四、技术细节

  1. LangGPT 框架简介

    • 模块(Modules):角色设定、版本信息、约束条件、目标、示例、工作流程等;
    • 元素(Elements):具体指令与内容单元,形式类似编程函数/属性,便于结构化复用 (medium.com)。
  2. 多智能体协作机制

    • 分析组:理解用户需求与反馈;
    • 设计组:根据模块结构生成内容;
    • 测试组 :对生成结果测试反馈,并触发反思优化 (github.com)。
  3. 实践效果

    • 在 GPT‑4‑turbo、Qwen2‑7B‑Instruct 等模型上,Minstrel 生成的提示显著提升任务效果;
    • 用户调研显示,结构化提示便于非技术背景者理解和使用 (arxiv.org)。

五、安装与使用

bash 复制代码
git clone https://github.com/langgptai/Minstrel.git
cd Minstrel

conda create -n langgpt python=3.10 -y
conda activate langgpt

pip install openai==1.37.1
pip install streamlit==1.37.0

streamlit run app.py

该命令启动 Web 界面,支持用户交互式生成提示 (github.com)。

六、应用案例

-- 提示词设计

--链式问答、专业测验、数学题求解、指令遵循与虚假检测等多场景测试中表现优异 (medium.com)。

-- 对非 AI 背景用户而言,降低设计壁垒,提升实用性和生成质量。

七、版本与未来规划

  • 当前版本已实现核心多智能体协作结构;
  • 后续将拓展低资源模型适配能力、增强多语言支持、更丰富的模块扩展等 。

项目地址链接


相关推荐
数字游民9527几秒前
2小时VibeCoding了一个看图猜词小程序:猜对了么
人工智能·ai·小程序·ai绘画·数字游民9527
每天学一点儿1 分钟前
【SimpleITK】从 Python 闭包到空间几何
人工智能
破烂pan27 分钟前
AI 学习研发技术 / 工具通用提示词模版
提示词·ai学习
心态与习惯41 分钟前
深度学习中的 seq2seq 模型
人工智能·深度学习·seq2seq
Coder_Boy_1 小时前
基于SpringAI的在线考试系统-0到1全流程研发:DDD、TDD与CICD协同实践
java·人工智能·spring boot·架构·ddd·tdd
北京耐用通信1 小时前
耐达讯自动化Profibus总线光纤中继器:光伏逆变器通讯的“稳定纽带”
人工智能·物联网·网络协议·自动化·信息与通信
啊阿狸不会拉杆2 小时前
《数字图像处理》第 7 章 - 小波与多分辨率处理
图像处理·人工智能·算法·计算机视觉·数字图像处理
AI即插即用2 小时前
即插即用系列 | CVPR 2025 AmbiSSL:首个注释模糊感知的半监督医学图像分割框架
图像处理·人工智能·深度学习·计算机视觉·视觉检测
数说星榆1812 小时前
脑启发计算与类神经形态芯片的协同
人工智能
m0_650108242 小时前
AD-GS:面向自监督自动驾驶场景的目标感知 B 样条高斯 splatting 技术
论文阅读·人工智能·自动驾驶·基于高斯泼溅的自监督框架·高质量场景渲染