Minstrel:多智能体协作生成结构化 LangGPT 提示词


一、项目概述

Minstrel 是一个基于 LangGPT 框架的多智能体系统,自动生成结构化、人格化的提示词。它通过多个协作代理,提升提示词的准确性、多样性和灵活性,适合非 AI 专家使用 (github.com)。

二、问题动机

  • 当前 LLM 提示设计经验依赖强、规则分散,对非专家学习成本高;
  • 提示词重用和迭代难度大,缺少系统化支持;
  • 为此,LangGPT 提出类编程语言结构设计,Minstrel 则实现自动化生成 (huggingface.co, arxiv.org)。

三、功能亮点

  • 多智能体协同 :Minstrel 分为分析组、设计组和测试组,三方协同完成提示的分析、设计和优化 (medium.com)。
  • 结构化提示生成 :遵循 LangGPT 框架的双层结构(模块 + 元素),系统化组织提示逻辑 (medium.com)。
  • 高效优化能力:经过自动化测试与代理间反思讨论,生成提示经常优于手动设计 。

四、技术细节

  1. LangGPT 框架简介

    • 模块(Modules):角色设定、版本信息、约束条件、目标、示例、工作流程等;
    • 元素(Elements):具体指令与内容单元,形式类似编程函数/属性,便于结构化复用 (medium.com)。
  2. 多智能体协作机制

    • 分析组:理解用户需求与反馈;
    • 设计组:根据模块结构生成内容;
    • 测试组 :对生成结果测试反馈,并触发反思优化 (github.com)。
  3. 实践效果

    • 在 GPT‑4‑turbo、Qwen2‑7B‑Instruct 等模型上,Minstrel 生成的提示显著提升任务效果;
    • 用户调研显示,结构化提示便于非技术背景者理解和使用 (arxiv.org)。

五、安装与使用

bash 复制代码
git clone https://github.com/langgptai/Minstrel.git
cd Minstrel

conda create -n langgpt python=3.10 -y
conda activate langgpt

pip install openai==1.37.1
pip install streamlit==1.37.0

streamlit run app.py

该命令启动 Web 界面,支持用户交互式生成提示 (github.com)。

六、应用案例

-- 提示词设计

--链式问答、专业测验、数学题求解、指令遵循与虚假检测等多场景测试中表现优异 (medium.com)。

-- 对非 AI 背景用户而言,降低设计壁垒,提升实用性和生成质量。

七、版本与未来规划

  • 当前版本已实现核心多智能体协作结构;
  • 后续将拓展低资源模型适配能力、增强多语言支持、更丰富的模块扩展等 。

项目地址链接


相关推荐
Salt_07283 分钟前
DAY 22 常见的特征筛选算法
人工智能·python·机器学习
机器觉醒时代5 分钟前
星动纪元 | 清华孵化的人形机器人先锋,以「具身大脑+本体+灵巧手」定义通用智能未来
人工智能·机器人·人形机器人·灵巧手
LplLpl116 分钟前
从零实现本地轻量化 LLM 部署:Python+Ollama 快速搭建个人 AI 助手
人工智能
Hi2024021711 分钟前
xtreme1半自动标注平台部署及使用
人工智能·标注·xtreme1
阿杰学AI12 分钟前
AI核心知识25——大语言模型之RAG(简洁且通俗易懂版)
人工智能·机器学习·语言模型·自然语言处理·aigc·agi·rag
亚马逊云开发者14 分钟前
新一代SageMaker+Databricks统一目录:机器学习与数据分析工作流打通方案
人工智能
IT·小灰灰15 分钟前
深度解析重排序AI模型:基于硅基流动API调用多语言重排序AI实战指南
java·大数据·javascript·人工智能·python·数据挖掘·php
Philtell19 分钟前
【动手学深度学习】笔记
人工智能·笔记·深度学习
极客BIM工作室19 分钟前
ZFNet反卷积网络(Deconvnet):让CNN“黑盒”变透明的核心技术
网络·人工智能·cnn
子午20 分钟前
【卫星图像识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习