已读论文创新点合集

系列文章目录


文章目录

  • 系列文章目录
  • [一、《LAMM: Label Alignment for Multi-Modal Prompt Learning》](#一、《LAMM: Label Alignment for Multi-Modal Prompt Learning》)
  • [二、《MaPLe: Multi-modal Prompt Learning》](#二、《MaPLe: Multi-modal Prompt Learning》)
  • [三、《Learning to Prompt for Vision-Language Models》CoOp](#三、《Learning to Prompt for Vision-Language Models》CoOp)

一、《LAMM: Label Alignment for Multi-Modal Prompt Learning》

第一、本文提出了一种标记对齐技术LAMM,它通过梯度优化来自动搜索最优嵌入。据论文作者所知,可训练类别标记的概念是在预训练的VL模型中首次提出的。

第二、为了避免整个提示模板的语义特征偏离太远,作者在训练阶段引入了层次丢失。层次损失便于在参数、特征和logit空间之间对齐类别表示。通过这些操作,CLIP模型的泛化能力在LAMM中得以保留,使得LAMM在下游任务中更好地区分不同的类别,同时保留了原始类别描述的语义。

第三、假定LAMM仅微调下游数据集中的标签嵌入,则它不会遇到在连续学习期间传统方法中通常遇到的灾难性遗忘问题。

二、《MaPLe: Multi-modal Prompt Learning》

(1)我们建议在CLIP中采用多模态快速学习,以使其视觉语言表征更好地保持一致。据我们所知,这是第一个用于微调CLIP的多模态提示方法.

(2)为了将在文本和图像编码器中学习到的提示联系起来,我们提出了一个耦合函数,以明确地将视觉提示条件化到它们的语言对应物上。它是两种模式之间的桥梁,允许梯度的相互传播,以促进协同作用。

(3)我们的多模态提示是在视觉和语言分支的多个Transformer模块中学习的,以逐步学习两种模态的协同行为。这种深度提示策略允许独立地对上下文关系建模,从而提供更大的灵活性来对齐视觉-语言表示。

三、《Learning to Prompt for Vision-Language Models》CoOp

(1)我们提出了一项关于在下游应用中调整最近提出的视觉语言模型的及时研究,并确定了与部署效率相关的一个关键问题,即,提示工程。

(2)为了实现针对预训练的视觉语言模型的提示工程的自动化,我们提出了一种基于连续提示学习的简单方法,并提供了两种可以处理不同识别任务的实现。

(3)我们首次证明了所提出的基于即时学习的方法在大型视觉语言模型的下游迁移学习性能和域转移下的鲁棒性方面优于手工制作的提示和线性探测模型。

(4)我们在github上开放了我们的项目的源代码。

相关推荐
Shaidou_Data4 分钟前
信息技术引领未来:大数据治理的实践与挑战
大数据·人工智能·数据清洗·信息技术·数据治理技术
Elastic 中国社区官方博客5 分钟前
开始使用 Elastic AI Assistant 进行可观察性和 Microsoft Azure OpenAI
大数据·人工智能·elasticsearch·microsoft·搜索引擎·全文检索·azure
qq_2739002322 分钟前
pytorch detach方法介绍
人工智能·pytorch·python
AI狂热爱好者39 分钟前
A3超级计算机虚拟机,为大型语言模型LLM和AIGC提供强大算力支持
服务器·人工智能·ai·gpu算力
边缘计算社区39 分钟前
推理计算:GPT-o1 和 AI 治理
人工智能·gpt
OBOO鸥柏1 小时前
OBOO鸥柏“触摸屏广告一体机交互”亮相2024中国珠海航展
大数据·人工智能·科技·交互
声网1 小时前
DeepL Voice:会议、对话实时语音翻译工具;吴佳俊团队:场景语言,智能补全文本到 3D 的场景理解
人工智能
Geeksend邮件营销1 小时前
定时清理潜在客户列表中的无效邮箱可提高EDM电子邮件自动化营销邮件送达率
人工智能·产品运营·用户运营·内容运营
新加坡内哥谈技术2 小时前
提升AI性能的关键大型语言模型(LLM)压缩策略
人工智能·语言模型·自然语言处理
OCR_wintone4212 小时前
易泊车牌识别相机:4S 店的智能之选
人工智能·数码相机·ocr