【编程底层原理】亿级数据表查询最后10条记录limit 99999990,10性能为啥特慢,而且数据库都被查宕机了

一、影响因素

查询一个包含1亿条数据的表,并使用 LIMIT 99999990, 10 来获取最后的10条记录,性能慢的原因主要是因为 LIMIT 子句的偏移量(offset)非常大。以下是一些导致性能问题的关键因素

  1. 大量跳过 - LIMIT 子句的前一个数字(99999990)是告诉数据库跳过前99999990条记录,这需要数据库扫描并跳过这些记录才能返回最后的10条。
  2. 全表扫描 - 如果没有有效的索引来支持这种类型的查询,数据库可能需要执行全表扫描,这在数据量大的情况下非常耗时。
  3. 排序开销 - 如果查询中包含 ORDER BY 子句,并且排序的列没有索引,数据库需要对所有记录进行排序,这会增加大量的CPU和内存开销。
  4. 临时表空间 - 排序操作可能需要使用临时表空间,对于大量数据,这可能会消耗大量的磁盘I/O资源。
  5. 锁定和闩锁 - 大量的跳过和扫描可能导致数据库锁定和闩锁,影响并发性能,甚至导致其他查询和更新操作被阻塞。
  6. 资源耗尽 - 如果数据库服务器的硬件资源(如CPU、内存、I/O)有限,这种类型的查询可能会消耗大量资源,导致服务器响应缓慢或宕机。

二、优化措施

为了避免这些问题,可以采取以下优化措施- 使用索引 - 确保有一个索引可以快速定位到接近表末尾的位置。例如,如果有一个时间戳或自增ID列,可以在这个列上创建索引。

  • 优化查询 - 如果可能,重写查询逻辑,避免使用大偏移量。如果需要获取最后10条记录,考虑使用其他逻辑来确定这10条记录的位置。
  • 分批处理 - 如果需要处理大量数据,考虑使用分批查询和处理的方法,每次处理一小部分数据。
  • 资源优化 - 根据服务器的硬件配置优化数据库的配置,如增加内存分配,优化I/O性能等。
  • 分布式查询 - 对于非常大的表,考虑使用分区表或分布式数据库系统,以提高查询性能。
  • 监控和调优 - 使用数据库的性能监控工具来识别瓶颈,并根据需要进行调优。
  • 避免大偏移量 - 如果业务逻辑允许,避免使用带有大偏移量的 LIMIT 子句,因为这通常是一个性能杀手。
    在某些情况下,如果表的结构和数据分布允许,可以通过其他方法来获取最后几条记录,例如,如果有一个自增ID,可以先获取最大ID,然后查询紧随其后的记录。
相关推荐
小鸡脚来咯13 分钟前
Redis与MySQL双写一致性(实战解决方案)
spring·oracle·mybatis
摇滚侠38 分钟前
Redis 零基础到进阶,Redis 哨兵监控,笔记63-73
数据库·redis·笔记
利剑 -~44 分钟前
mysql面试题整理
android·数据库·mysql
老华带你飞44 分钟前
物流信息管理|基于springboot 物流信息管理系统(源码+数据库+文档)
数据库·vue.js·spring boot
程序员卷卷狗1 小时前
Redis事务与MySQL事务有什么区别?一文分清
数据库·redis·mysql
玩大数据的龙威1 小时前
农经权二轮延包—数据(新老农经权)比对软件更新
数据库·arcgis
保持低旋律节奏1 小时前
网络系统管理——期末复习
数据库
程序员佳佳2 小时前
2025年大模型终极横评:GPT-5.2、Banana Pro与DeepSeek V3.2实战硬核比拼(附统一接入方案)
服务器·数据库·人工智能·python·gpt·api
roo_13 小时前
github 获取构造图数据库的LNB数据集和使用说明
数据库
罗汉松驻扎的工作基地3 小时前
sql server 2014 下载和安装
数据库