【编程底层原理】亿级数据表查询最后10条记录limit 99999990,10性能为啥特慢,而且数据库都被查宕机了

一、影响因素

查询一个包含1亿条数据的表,并使用 LIMIT 99999990, 10 来获取最后的10条记录,性能慢的原因主要是因为 LIMIT 子句的偏移量(offset)非常大。以下是一些导致性能问题的关键因素

  1. 大量跳过 - LIMIT 子句的前一个数字(99999990)是告诉数据库跳过前99999990条记录,这需要数据库扫描并跳过这些记录才能返回最后的10条。
  2. 全表扫描 - 如果没有有效的索引来支持这种类型的查询,数据库可能需要执行全表扫描,这在数据量大的情况下非常耗时。
  3. 排序开销 - 如果查询中包含 ORDER BY 子句,并且排序的列没有索引,数据库需要对所有记录进行排序,这会增加大量的CPU和内存开销。
  4. 临时表空间 - 排序操作可能需要使用临时表空间,对于大量数据,这可能会消耗大量的磁盘I/O资源。
  5. 锁定和闩锁 - 大量的跳过和扫描可能导致数据库锁定和闩锁,影响并发性能,甚至导致其他查询和更新操作被阻塞。
  6. 资源耗尽 - 如果数据库服务器的硬件资源(如CPU、内存、I/O)有限,这种类型的查询可能会消耗大量资源,导致服务器响应缓慢或宕机。

二、优化措施

为了避免这些问题,可以采取以下优化措施- 使用索引 - 确保有一个索引可以快速定位到接近表末尾的位置。例如,如果有一个时间戳或自增ID列,可以在这个列上创建索引。

  • 优化查询 - 如果可能,重写查询逻辑,避免使用大偏移量。如果需要获取最后10条记录,考虑使用其他逻辑来确定这10条记录的位置。
  • 分批处理 - 如果需要处理大量数据,考虑使用分批查询和处理的方法,每次处理一小部分数据。
  • 资源优化 - 根据服务器的硬件配置优化数据库的配置,如增加内存分配,优化I/O性能等。
  • 分布式查询 - 对于非常大的表,考虑使用分区表或分布式数据库系统,以提高查询性能。
  • 监控和调优 - 使用数据库的性能监控工具来识别瓶颈,并根据需要进行调优。
  • 避免大偏移量 - 如果业务逻辑允许,避免使用带有大偏移量的 LIMIT 子句,因为这通常是一个性能杀手。
    在某些情况下,如果表的结构和数据分布允许,可以通过其他方法来获取最后几条记录,例如,如果有一个自增ID,可以先获取最大ID,然后查询紧随其后的记录。
相关推荐
悄悄敲敲敲4 小时前
MySQL表的约束
数据库·mysql
鼠爷ねずみ4 小时前
SpringCloud前后端整体开发流程-以及技术总结文章实时更新中
java·数据库·后端·spring·spring cloud
九皇叔叔4 小时前
MySQL 数据库 Read View 详解
数据库·mysql·mvcc·read view
Elastic 中国社区官方博客5 小时前
Elasticsearch:圣诞晚餐 BBQ - 图像识别
大数据·数据库·elasticsearch·搜索引擎·ai·全文检索
cui_win6 小时前
Prometheus实战教程 - Redis 监控
数据库·redis·prometheus
JIngJaneIL6 小时前
基于java + vue个人博客系统(源码+数据库+文档)
java·开发语言·前端·数据库·vue.js·spring boot
TG:@yunlaoda360 云老大6 小时前
华为云国际站代理商备份策略设置过程中遇到问题如何解决?
服务器·数据库·华为云
SelectDB7 小时前
Doris Catalog 已上线!性能提升 200x,全面优于 JDBC Catalog,跨集群查询迈入高性能分析时代
数据库·数据分析·apache
TAEHENGV7 小时前
进度跟踪模块 Cordova 与 OpenHarmony 混合开发实战
android·javascript·数据库
神秘面具男037 小时前
MySQL 从基础到实践
数据库·mysql