Spark读取MySQL数据库表

官方地址:JDBC To Other Databases - Spark 4.0.0 Documentation

官方案例:

复制代码
// Note: JDBC loading and saving can be achieved via either the load/save or jdbc methods
// Loading data from a JDBC source
val jdbcDF = spark.read
  .format("jdbc")
  .option("url", "jdbc:postgresql:dbserver")
  .option("dbtable", "schema.tablename")
  .option("user", "username")
  .option("password", "password")
  .load()

val connectionProperties = new Properties()
connectionProperties.put("user", "username")
connectionProperties.put("password", "password")
val jdbcDF2 = spark.read
  .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)
// Specifying the custom data types of the read schema
connectionProperties.put("customSchema", "id DECIMAL(38, 0), name STRING")
val jdbcDF3 = spark.read
  .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)

// Saving data to a JDBC source
jdbcDF.write
  .format("jdbc")
  .option("url", "jdbc:postgresql:dbserver")
  .option("dbtable", "schema.tablename")
  .option("user", "username")
  .option("password", "password")
  .save()

jdbcDF2.write
  .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)

// Specifying create table column data types on write
jdbcDF.write
  .option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)")
  .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)

验证:

复制代码
<dependencies>
    <dependency>
      <groupId>org.scala-lang</groupId>
      <artifactId>scala-library</artifactId>
      <version>2.13.16</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.13</artifactId>
      <version>4.0.0</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql_2.13</artifactId>
      <version>4.0.0</version>
    </dependency>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>

    <dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
      <version>8.0.15</version>
    </dependency>

    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming_2.13</artifactId>
      <version>4.0.0</version>
    </dependency>

    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming-kafka-0-10_2.13</artifactId>
      <version>4.0.0</version>
    </dependency>
  </dependencies>

import org.apache.spark.SparkConf

object SparkCase04 {


  import org.apache.spark.sql.SparkSession


  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setMaster("local[1]").setAppName("WC")

    val spark = SparkSession.builder().config(conf).getOrCreate()


   var df = spark.read.format("jdbc")
    .option("url", "jdbc:mysql://node11:3306/wjobs?useSSL=false")
    .option("dbtable", "user")
    .option("user", "root")
    .option("password", "root123")
    .load()

    df.show()
  }


}
相关推荐
陌上丨1 天前
Redis的Key和Value的设计原则有哪些?
数据库·redis·缓存
uesowys1 天前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56781 天前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
ccecw1 天前
Mysql ONLY_FULL_GROUP_BY模式详解、group by非查询字段报错
数据库·mysql
JH30731 天前
达梦数据库与MySQL的核心差异解析:从特性到实践
数据库·mysql
数据知道1 天前
PostgreSQL 核心原理:如何利用多核 CPU 加速大数据量扫描(并行查询)
数据库·postgresql
麦聪聊数据1 天前
Web 原生架构如何重塑企业级数据库协作流?
数据库·sql·低代码·架构
未来之窗软件服务1 天前
数据库优化提速(四)新加坡房产系统开发数据库表结构—仙盟创梦IDE
数据库·数据库优化·计算机软考
Goat恶霸詹姆斯1 天前
mysql常用语句
数据库·mysql·oracle
大模型玩家七七1 天前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习