使用LangChain创建简单的语言模型应用程序【快速入门指南】

markdown 复制代码
## 引言

在这篇文章中,我们将展示如何使用LangChain构建一个简单的语言模型(LLM)应用程序。这个应用程序的功能是将文本从英语翻译成其他语言。尽管应用程序的逻辑相对简单,但它能够帮助我们学习如何使用LangChain进行更多复杂的功能开发。

### 文章目的

通过阅读本教程,你将掌握以下内容:

- 如何使用语言模型
- 如何使用PromptTemplates和OutputParsers
- 如何使用LangChain Expression Language (LCEL)连接组件
- 如何使用LangSmith调试和跟踪应用程序
- 如何用LangServe部署应用程序

让我们开始吧!

## 主要内容

### 环境设置

#### Jupyter Notebook

本指南推荐在Jupyter Notebook中运行,便于交互式学习LLM系统。点击[这里](https://jupyter.org/install)获取安装说明。

#### 安装LangChain

通过以下命令安装LangChain:

```bash
pip install langchain
conda install langchain -c conda-forge

使用语言模型

首先,我们学习如何使用一个语言模型。LangChain支持多种模型,你可以根据需要选择。

OpenAI模型示例
bash 复制代码
pip install -qU langchain-openai

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()  # 获取API密钥

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-4")
调用模型
python 复制代码
from langchain_core.messages import HumanMessage, SystemMessage

messages = [
    SystemMessage(content="Translate the following from English into Italian"),
    HumanMessage(content="hi!"),
]

model.invoke(messages)  # 使用API代理服务提高访问稳定性

OutputParsers

为了提取模型的响应字符串,我们可以使用OutputParser。

python 复制代码
from langchain_core.output_parsers import StrOutputParser

parser = StrOutputParser()
result = model.invoke(messages)
parser.invoke(result)

Prompt Templates

PromptTemplates用于将用户输入转换为可传递给模型的格式。

python 复制代码
from langchain_core.prompts import ChatPromptTemplate

system_template = "Translate the following into {language}:"
prompt_template = ChatPromptTemplate.from_messages(
    [("system", system_template), ("user", "{text}")]
)

LCEL连接组件

利用LCEL,我们可以将PromptTemplate、模型和OutputParser串联在一起。

python 复制代码
chain = prompt_template | model | parser
chain.invoke({"language": "italian", "text": "hi"})

LangServe部署应用程序

创建一个名为serve.py的文件,并添加以下代码以启动服务器:

python 复制代码
from fastapi import FastAPI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langserve import add_routes

system_template = "Translate the following into {language}:"
prompt_template = ChatPromptTemplate.from_messages([
    ('system', system_template),
    ('user', '{text}')
])

model = ChatOpenAI()
parser = StrOutputParser()

chain = prompt_template | model | parser

app = FastAPI()

add_routes(app, chain, path="/chain")

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8000)

启动服务器:

bash 复制代码
python serve.py

常见问题和解决方案

  • API访问问题:如果在某些地区访问API困难,可以考虑使用代理服务。
  • 调试问题:使用LangSmith可以更好地跟踪和调试应用程序。

总结和进一步学习资源

通过本教程,你已经学会了如何使用LangChain创建简单的LLM应用程序。要深入学习以下内容:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

复制代码
---END---
相关推荐
武子康12 分钟前
Java-72 深入浅出 RPC Dubbo 上手 生产者模块详解
java·spring boot·分布式·后端·rpc·dubbo·nio
_殊途41 分钟前
《Java HashMap底层原理全解析(源码+性能+面试)》
java·数据结构·算法
椰椰椰耶2 小时前
【Spring】拦截器详解
java·后端·spring
没有bug.的程序员3 小时前
JAVA面试宝典 - 《MyBatis 进阶:插件开发与二级缓存》
java·面试·mybatis
橡晟3 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子3 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
倔强青铜33 小时前
苦练Python第18天:Python异常处理锦囊
开发语言·python
企鹅与蟒蛇4 小时前
Ubuntu-25.04 Wayland桌面环境安装Anaconda3之后无法启动anaconda-navigator问题解决
linux·运维·python·ubuntu·anaconda
autobaba4 小时前
编写bat文件自动打开chrome浏览器,并通过selenium抓取浏览器操作chrome
chrome·python·selenium·rpa
没有羊的王K4 小时前
SSM框架学习——day1
java·学习