使用LangChain创建简单的语言模型应用程序【快速入门指南】

markdown 复制代码
## 引言

在这篇文章中,我们将展示如何使用LangChain构建一个简单的语言模型(LLM)应用程序。这个应用程序的功能是将文本从英语翻译成其他语言。尽管应用程序的逻辑相对简单,但它能够帮助我们学习如何使用LangChain进行更多复杂的功能开发。

### 文章目的

通过阅读本教程,你将掌握以下内容:

- 如何使用语言模型
- 如何使用PromptTemplates和OutputParsers
- 如何使用LangChain Expression Language (LCEL)连接组件
- 如何使用LangSmith调试和跟踪应用程序
- 如何用LangServe部署应用程序

让我们开始吧!

## 主要内容

### 环境设置

#### Jupyter Notebook

本指南推荐在Jupyter Notebook中运行,便于交互式学习LLM系统。点击[这里](https://jupyter.org/install)获取安装说明。

#### 安装LangChain

通过以下命令安装LangChain:

```bash
pip install langchain
conda install langchain -c conda-forge

使用语言模型

首先,我们学习如何使用一个语言模型。LangChain支持多种模型,你可以根据需要选择。

OpenAI模型示例
bash 复制代码
pip install -qU langchain-openai

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()  # 获取API密钥

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-4")
调用模型
python 复制代码
from langchain_core.messages import HumanMessage, SystemMessage

messages = [
    SystemMessage(content="Translate the following from English into Italian"),
    HumanMessage(content="hi!"),
]

model.invoke(messages)  # 使用API代理服务提高访问稳定性

OutputParsers

为了提取模型的响应字符串,我们可以使用OutputParser。

python 复制代码
from langchain_core.output_parsers import StrOutputParser

parser = StrOutputParser()
result = model.invoke(messages)
parser.invoke(result)

Prompt Templates

PromptTemplates用于将用户输入转换为可传递给模型的格式。

python 复制代码
from langchain_core.prompts import ChatPromptTemplate

system_template = "Translate the following into {language}:"
prompt_template = ChatPromptTemplate.from_messages(
    [("system", system_template), ("user", "{text}")]
)

LCEL连接组件

利用LCEL,我们可以将PromptTemplate、模型和OutputParser串联在一起。

python 复制代码
chain = prompt_template | model | parser
chain.invoke({"language": "italian", "text": "hi"})

LangServe部署应用程序

创建一个名为serve.py的文件,并添加以下代码以启动服务器:

python 复制代码
from fastapi import FastAPI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langserve import add_routes

system_template = "Translate the following into {language}:"
prompt_template = ChatPromptTemplate.from_messages([
    ('system', system_template),
    ('user', '{text}')
])

model = ChatOpenAI()
parser = StrOutputParser()

chain = prompt_template | model | parser

app = FastAPI()

add_routes(app, chain, path="/chain")

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8000)

启动服务器:

bash 复制代码
python serve.py

常见问题和解决方案

  • API访问问题:如果在某些地区访问API困难,可以考虑使用代理服务。
  • 调试问题:使用LangSmith可以更好地跟踪和调试应用程序。

总结和进一步学习资源

通过本教程,你已经学会了如何使用LangChain创建简单的LLM应用程序。要深入学习以下内容:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

复制代码
---END---
相关推荐
风象南6 分钟前
SpringBoot的5种日志输出规范策略
java·spring boot·后端
咖啡啡不加糖12 分钟前
深入理解MySQL死锁:从原理、案例到解决方案
java·数据库·mysql
zimoyin14 分钟前
Compose Multiplatform 实现自定义的系统托盘,解决托盘乱码问题
java
狐凄15 分钟前
Python实例题:Python计算线性代数
开发语言·python·线性代数
西猫雷婶16 分钟前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
述雾学java19 分钟前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python
武子康19 分钟前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
要努力啊啊啊22 分钟前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
啾啾Fun31 分钟前
【Java微服务组件】分布式协调P4-一文打通Redisson:从API实战到分布式锁核心源码剖析
java·redis·分布式·微服务·lua·redisson
消失的旧时光-19431 小时前
Android USB 通信开发
android·java