线性代数之QR分解和SVD分解

文章目录

1.QR分解

矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积的形式。

任意实数方阵A,都能被分解 。这里的Q为正交单位阵,即 R是一个上三角矩阵。这种分解被称为QR分解。

QR分解也有若干种算法,常见的包括Gram--Schmidt、Householder和Givens算法。 QR分解是将矩阵分解为一个正交矩阵与上三角矩阵的乘积。用一张图可以形象地表示QR分解:

Schmidt正交化

定理1

设A是n阶实非奇异矩阵,则存在正交矩阵Q和实非奇异上三角矩阵R使A有QR分解;且除去相差一个对角元素的绝对值(模)全等于1的对角矩阵因子外,分解是唯一的.

定理2

设A是m×n实矩阵,且其n个列向量线性无关,则A有分解A=QR,其中Q是m×n实矩阵,且满足QHTQ=E,R是n阶实非奇异上三角矩阵该分解除去相差一个对角元素的绝对值(模)全等于1的对角矩阵因子外是唯一的.用Schmidt正交化分解方法对矩阵进行QR分解时,所论矩阵必须是列满秩矩阵。

用施密特正交计算方法如下:

Householder变换



Householder法QR分解例子:





QR分解的应用

QR 分解经常用来解线性最小二乘法问题

2. 求矩阵特征值、特征向量的基本方法

由于SVD分解会涉及到矩阵特征值和特征向量的求解,因此有必要简单介绍下矩阵特征值的求解方法。

3.SVD分解

奇异矩阵是指行列式值为零的方阵,它具有以下特点:

非满秩:矩阵的秩小于其阶数,意味着行向量或列向量线性相关。

不可逆:没有逆矩阵,因为逆运算要求行列式不为零。

零空间非空:存在非零向量与之相乘结果为零向量。

与线性方程组求解相关:如果系数矩阵奇异,方程组可能无解或有无穷多解。

非奇异矩阵的对比:非奇异矩阵(可逆矩阵)行列式不为零,满秩,有唯一逆矩阵和零解。

矩阵的特征值和奇异值是线性代数中重要的概念,它们之间存在一定的关系。

对于一个方阵,其特征值是该矩阵在空间中的特殊向量方向上的缩放因子。特征值可以通过解矩阵的特征值问题得到,即找到满足方程 Ax = λx 的非零向量 x 和标量 λ。

而对于一个非方阵的矩阵,它的奇异值则是矩阵的秩和特征向量的相对缩放因子。奇异值分解(SVD)可以将矩阵分解为三个部分:U、Σ 和 V^T,其中 U 和 V 是正交矩阵,Σ 是一个对角矩阵,对角线上的元素就是矩阵的奇异值。

有以下关系:

对于一个方阵,其特征值等于其奇异值。

对于一个非方阵的矩阵,其奇异值是其特征值的平方根。

需要注意的是,特征值和奇异值所描述的信息不完全相同,特征值更多地描述了矩阵在特定方向上的缩放,而奇异值则更多地描述了矩阵整体的缩放和旋转。它们在不同的应用领域和问题中有着不同的用途和解释。

例题分析:

SVD分解的应用

1.降维

通过上面的式子很容易看出,原来矩阵AA的特征有nn维。而经过SVD分解之后,完全可以用前rr个非零奇异值对应的奇异向量表示矩阵AA的主要特征。这样,就天然起到了降维的作用。

2.压缩

还是看上面的式子,再结合第三部分的图,也很容易看出,经过SVD分解以后,要表示原来的大矩阵AA,我们只需要存U,Σ,V三个较小的矩阵的即可。而这三个较小矩阵的规模,加起来也远远小于原有矩阵AA。这样,就天然起到了压缩的作用。

参考文献

SVD分解和QR分解---Apple的学习笔记
Math-Model(五)正交分解(QR分解)
householder进行矩阵QR分解
QR分解-givens旋转与Householder变换
特征值,特征向量和矩阵对角化
数值计算3:特征值、特征向量和对角化
超详细解释奇异值分解(SVD)【附例题和分析】
奇异值分解(SVD)
这是我见过最通俗易懂的SVD(奇异值分解)算法介绍

https://math.ecnu.edu.cn/\~jypan/Teaching/NA/2021/slides_03D_LS.pdf

https://math.ecnu.edu.cn/\~jypan/Teaching/NA/2021/slides_02A_LU.pdf

https://math.ecnu.edu.cn/\~jypan/Teaching/NA/2021/

相关推荐
PaLu-LI1 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
取个名字真难呐1 天前
torch.tile 手动实现 kron+矩阵乘法
深度学习·线性代数·矩阵
十年一梦实验室2 天前
【Eigen教程】矩阵、数组和向量类(二)
线性代数·算法·矩阵
BlackPercy2 天前
【线性代数】列主元法求矩阵的逆
线性代数·机器学习·矩阵
EQUINOX12 天前
3b1b线性代数基础
人工智能·线性代数·机器学习
retaw_02 天前
74. 搜索二维矩阵
线性代数·矩阵
BlackPercy3 天前
【线性代数】基础版本的高斯消元法
线性代数·julia
金融OG3 天前
99.8 金融难点通俗解释:净资产收益率(ROE)
大数据·python·线性代数·机器学习·数学建模·金融·矩阵
洛水微寒4 天前
多张图片读入后组成一个矩阵。怎么读取图片,可以让其读入的形式是:ndarray(a,b,c)分别的含义:a为多少张图片,b*c为图片大小
线性代数·矩阵
金融OG4 天前
5. 马科维茨资产组合模型+AI金融智能体(qwen-max)识别政策意图方案(理论+Python实战)
大数据·人工智能·python·线性代数·机器学习·金融