(PySpark)RDD实验实战——求商品销量排行

复制代码
实验环境:

提前准备好findspark,pyspark,py4j等库

import findspark
from pyspark import SparkContext, SparkConf

findspark.init()
复制代码
#初始化spark,默认为你所设定的环境变量
conf = SparkConf().setAppName("jsytest").setMaster("local[4]")
复制代码
#创建一个SparkConf对象,用于配置Spark应用程序,用setAppName来设置程序名称,
#用setMaster来设置运行模式和线程数,这里为本地模式,4个线程
sc = SparkContext(conf=conf)
复制代码
#创建一个SparkContext对象,它是与Spark集群通信的主要接口
# sc.stop()  #关闭spark上下文
goods = [("Book",30,50),("Pen",5,80),("Notebook",15,60),("Pencil",2,70),("Eraser",3,50)]
复制代码
#创建所需的数据集(商品名,价格,销量)
n=2
复制代码
#所需的前n个排序
rdd = sc.parallelize(goods)
复制代码
#用parallelize方法将goods中的数据结构并行化成RDD
rdd.sortBy(lambda x:x[2], ascending=True,numPartitions=3).collect()
复制代码
#rdd.sortBy()用于对RDD中的元素按照指定的排序键进行排序
#rdd.sortBy(keyfunc, ascending=True, numPartitions=None)
#keyfunc,是从 RDD 的每个元素中提取用于排序的键,多分区的话可以通过指定key的排序,来达到操作目的
#ascending表示排序的顺序。 True为升序,False为降序。
#numPartitions表示最终返回结果RDD的分区数。
#这里取的是数据中的第三分区销量作为key,返回的值也是三个分区
ss=rdd.sortBy(lambda x:x[2], ascending=True,numPartitions=3).collect()
复制代码
##把最终排序导入ss数组中
c=rdd.count()-1
复制代码
#取数组上限
ysj=0
复制代码
#记录循环次数
while ysj<=n-1:
#循环输出
        print("销售第",ysj+1,"多的:",ss[c-ysj])

        ysj=ysj+1

所有代码如下

import findspark
from pyspark import SparkContext, SparkConf
findspark.init()
conf = SparkConf().setAppName("jsytest").setMaster("local[4]")
sc = SparkContext(conf=conf
goods = [("Book",30,50),("Pen",5,80),("Notebook",15,60),("Pencil",2,70),("Eraser",3,50)]
n=2
rdd = sc.parallelize(goods)
rdd.sortBy(lambda x:x[2], ascending=True,numPartitions=3).collect()
ss=rdd.sortBy(lambda x:x[2], ascending=True,numPartitions=3).collect()
c=rdd.count()-1
ysj=0
while ysj<=n-1:
        print("销售第",ysj+1,"多的:",ss[c-ysj])
        ysj=ysj+1

结果演示

销售第 1 多的: ('Pen', 5, 80)
销售第 2 多的: ('Pencil', 2, 70)
相关推荐
进击的六角龙1 小时前
Python中处理Excel的基本概念(如工作簿、工作表等)
开发语言·python·excel
一只爱好编程的程序猿1 小时前
Java后台生成指定路径下创建指定名称的文件
java·python·数据下载
Aniay_ivy1 小时前
深入探索 Java 8 Stream 流:高效操作与应用场景
java·开发语言·python
gonghw4031 小时前
DearPyGui学习
python·gui
向阳12182 小时前
Bert快速入门
人工智能·python·自然语言处理·bert
engchina2 小时前
Neo4j 和 Python 初学者指南:如何使用可选关系匹配优化 Cypher 查询
数据库·python·neo4j
兆。2 小时前
掌握 PyQt5:从零开始的桌面应用开发
开发语言·爬虫·python·qt
南宫理的日知录2 小时前
99、Python并发编程:多线程的问题、临界资源以及同步机制
开发语言·python·学习·编程学习
coberup2 小时前
django Forbidden (403)错误解决方法
python·django·403错误
龙哥说跨境3 小时前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫