医学数据分析实训 项目一 医学数据采集

项目一 医学数据采集

一、实践目的

  1. 了解医学数据的特点;
  2. 熟悉常见的医学公共数据库的使用方法;
  3. 掌握获取医学数据的方法;

二、实践平台

  1. 操作系统:Windows10 及以上
  2. Python 版本:3.8.x 及以上
  3. PyCharm 或 Anoconda 集成环境

三、实践内容

医学数据采集实验的数据来源广泛,主要包括以下几个方面:

  • 患者数据:通过电子病历系统、患者自主记录等方式收集患者的临床症状、体征、病史、用药情况等信息;
  • 医疗设备数据:利用各种医疗设备(如心电图机、超声仪、CT 扫描仪等)实时监测患者的生理参数和健康状况,生成大量医学图像和数据;
  • 实验室数据:通过实验室检测获取患者的生化指标、遗传学信息、微生物学结果等数据;
  • 外部数据源:包括公共卫生数据库、医学研究数据库等,这些数据库包含了大量的医学研究成果和临床数据,为医学数据采集实验提供了丰富的资源。

1. 熟悉常见医学公共数据库的使用方法

(1)熟悉 Kaplan-Meier Plotter 平台 https://kmplot.com/analysis/ 的使用
  • 操作过程
    • 访问 Kaplan-Meier Plotter 平台首页(图 1)。

    • 输入对应参数(图 2),如基因 STAT2 和乳腺癌生存率的相关性。

    • 生成生存率关系图(图 3),并通过文字对结果进行解释。


解释含义:(fitten code生成)

1 高表达STAT2基因的乳腺癌患者群体的生存率显著高于低表达

2 体这种差异在统计学上是显著的(Log-rank P值为9e-11)

3 STAT2基因的高表达可能与乳腺癌患者更好的生存率相关

(2)熟悉 SEER 数据库 https://seer.cancer.gov/data-software/ 的使用方法
  • 操作过程
    • 在 SEER 数据库中查询癌症数据。


    • 对查询结果(图 4)进行解释。

解释含义:(fitten code生成)

1 从2000年到2021年,男性和女性的癌症发病率总体上保持稳定,没有显著的变化

2 男性和女性的发病率在2000年至2017年间没有显著的年度百分比变化

3 这张图表明,在2000年至2021年期间,所有癌症部位的年龄调整发病率在男性和女性中都没有显著变化

2. 使用 GEO 数据库 https://www.ncbi.nlm.nih.gov/geo 下载数据集

  • 操作步骤

    • 访问 GEO 页面(图 5)。

    • 在 GEO 中检索肝癌(HCC)环状 RNA(circRNA)研究数据(图 6)。

    • 选择并查看检索到的数据集(图 7)。

    • 查看数据集的详细信息(图 8)。

    • 下载数据集(图 9)。

  • 查看下载的数据集文件(图 10),并对该数据集进行解释。

解释含义:(fitten code生成)

在GEO(Gene Expression Omnibus)数据库中,"ID_REF"通常表示基因或探针的标识符。在你提供的数据集中,"ID_REF"后面的数据是基因或探针的表达值,这些值对应于不同的样本(GSM编号)。

这是一个关于肝癌(HCC)环状RNA(circRNA)研究的表达矩阵。每一行代表一个特定的circRNA(由"ID_REF"标识),每一列代表一个样本(由GSM编号标识)。矩阵中的数值表示相应circRNA在相应样本中的表达水平。

例如,第一行数据:

"ASCRP000002" 9.042573151 9.238902276 8.997313248 9.4371723 8.962706649 9.415486133 9.017848355 9.524889458 9.671877122 9.479558558 9.227469787 9.409693079 8.97187312 8.96956744

CopyInsert

表示circRNA "ASCRP000002"在14个不同样本中的表达值。这些值可以用来分析circRNA在不同样本中的表达差异,从而研究其在肝癌发生发展中的作用。

3. 通过 UCI 机器学习库下载数据集

  • 操作步骤
    • 访问 UCI 机器学习库官网(https://archive.ics.uci.edu/ )。

    • 在数据集中搜索并下载任意两个与医药卫生相关的数据集。

    • 一个是心脏病数据集,另一个是乳腺癌数据集。download the datasets.



  • 通过文字对数据集进行解释。

解释含义:(fitten code生成)

  • 这个打开数据集,自己看吧。这里举一个例子



相关推荐
阿里云大数据AI技术3 分钟前
【跨国数仓迁移最佳实践3】资源消耗减少50%!解析跨国数仓迁移至MaxCompute背后的性能优化技术
数据库·数据分析·云计算
GBASE33 分钟前
“G”术时刻:如何用Perl DBD-ODBC成功连接南大通用GBase 8a数据库(一)
数据库
Yu_Lijing38 分钟前
MySQL进阶学习与初阶复习第二天
数据库·c++·学习·mysql
孫治AllenSun44 分钟前
【JSqlParser】sql解析器使用案例
数据库·windows·sql
Vinkey_Z1 小时前
MongoDB
数据库
l1t1 小时前
开源嵌入式数组引擎TileDB的简单使用
c语言·数据库·c++
飞翔的佩奇2 小时前
Java项目:基于SSM框架实现的社区团购管理系统【ssm+B/S架构+源码+数据库+毕业论文+答辩PPT+远程部署】
java·数据库·vue.js·毕业设计·mybatis·答辩ppt·社区团购
数据皮皮侠2 小时前
中国汽车能源消耗量(2010-2024年)
大数据·数据库·人工智能·物联网·金融·汽车·能源
小高Baby@2 小时前
解决幻读问题
数据库·mysql
TDengine (老段)2 小时前
TDengine 转化函数 TO_TIMESTAMP 用户手册
java·大数据·数据库·物联网·时序数据库·tdengine·涛思数据