面部表情数据集合集——需要的点进来

文章目录

1、基本介绍

收集并整理了面部表情识别(Facial Emotion Recognition,FER)相关的数据集,包括FER2013数据集、FERPLUS数据集、RAF数据集、CK+数据集,MMAFEDB数据集,AffectNet数据集。

2、每个数据集介绍

2.1、FER2013(已预处理)

Fer2013是由Goodfellow等人于2013年发布的广泛使用的表情识别数据集。它包含约35,000张灰度图像,这些图像来自互联网公开资源,涵盖了7种不同的表情类别(愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性)。Fer2013数据集的多样性和规模使其成为训练深度学习模型的理想选择。

2.2、FERPLUS(已预处理)

FER+ 注释为标准的 Emotion FER 数据集提供了一组新的标签。在 FER+ 中,每张图片都有10个众包标签,这比原始的FER标签提供了更好的静态图像情感的真相。每个图像有10个标记,研究人员就可以估计每张脸的情绪概率分布。这允许构建产生统计分布或多标签输出的算法,而不是传统的单标签输出.

2.3、RAF

RAF-DB人脸表情数据集是一个用于面部表情识别数据集。该数据集包含了丰富的训练和验证数据,适用于研究和开发人脸表情识别算法。

2.4、CK+

CK+(Cohn-Kanade+)数据集是由Lucey等人于2010年发布的一个面部表情数据集。CK+数据集包含了593个视频序列,涵盖了8种不同的表情类别,包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶、中性和轻蔑。CK+数据集具有较高的标注准确率,提供了动态表情信息。

2.5、AffectNet

AffectNet 数据集:AffectNet是当前最大的面部表情数据集之一,包含约42万张标注了表情类别和面部活动单元(AU)信息的面部表情图像。每张图像都标注了表情类别和面部活动单元(AU)信息。AffectNet适合训练和评估深度学习模型,尤其是用于自然环境中的面部表情识别。

2.6、MMAFEDB

一共包含128K张MMA面部表情图像数据集,MMAFEDB包含用于训练,验证和测试的数据划分,每个目录包含对应于七个面部表情类别的七个子目录,分别是angry-愤怒,disgust-厌恶,fear-恐惧,happy-快乐,neutral-中性,sad-悲伤,surprise-惊讶

3、获取方式

收集整理不易,获取方式请点击我

相关推荐
杨浦老苏6 天前
带Web界面的yt-dlp视频下载器
docker·工具·群晖·下载·youtube
@HNUSTer8 天前
基于 GEE 计算研究区年均地表温度数据
云计算·数据集·遥感大数据·gee·云平台
前网易架构师-高司机11 天前
木材表面缺陷检测数据集,支持YOLO+COCO JSON+PASICAL VOC XML+DARKNET格式标注信息,平均正确识别率95.0%
yolo·数据集·木材缺陷识别·木材表面缺陷
@HNUSTer11 天前
基于 GEE 利用插值方法填补缺失影像
云计算·数据集·遥感大数据·gee·云平台
@HNUSTer12 天前
基于 GEE Landsat 与 Sentinel 数据的归一化水体指数 NDWI 计算和水体提取
云计算·数据集·遥感大数据·gee·云平台
狂小虎1 个月前
Ubuntu下载zenodo文件Ubuntu download zenodo
ubuntu·数据集·zenodo
HyperAI超神经1 个月前
超越 GPT-4o!从 HTML 到 Markdown,一键整理复杂网页;AI 对话不再冰冷,大模型对话微调数据集让响应更流畅
人工智能·深度学习·llm·html·数据集·多模态·gpt-4o
HyperAI超神经1 个月前
微软与腾讯技术交锋,TRELLIS引领3D生成领域多格式支持新方向
人工智能·深度学习·机器学习·计算机视觉·3d·大模型·数据集
小舞O_o2 个月前
RP2K:一个面向细粒度图像的大规模零售商品数据集
人工智能·pytorch·python·分类·数据集
weixin_468466852 个月前
医学影像数据集汇总分享
深度学习·目标检测·数据集·图像分割·机器视觉·医学影像·ct影像