面部表情数据集合集——需要的点进来

文章目录

1、基本介绍

收集并整理了面部表情识别(Facial Emotion Recognition,FER)相关的数据集,包括FER2013数据集、FERPLUS数据集、RAF数据集、CK+数据集,MMAFEDB数据集,AffectNet数据集。

2、每个数据集介绍

2.1、FER2013(已预处理)

Fer2013是由Goodfellow等人于2013年发布的广泛使用的表情识别数据集。它包含约35,000张灰度图像,这些图像来自互联网公开资源,涵盖了7种不同的表情类别(愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性)。Fer2013数据集的多样性和规模使其成为训练深度学习模型的理想选择。

2.2、FERPLUS(已预处理)

FER+ 注释为标准的 Emotion FER 数据集提供了一组新的标签。在 FER+ 中,每张图片都有10个众包标签,这比原始的FER标签提供了更好的静态图像情感的真相。每个图像有10个标记,研究人员就可以估计每张脸的情绪概率分布。这允许构建产生统计分布或多标签输出的算法,而不是传统的单标签输出.

2.3、RAF

RAF-DB人脸表情数据集是一个用于面部表情识别数据集。该数据集包含了丰富的训练和验证数据,适用于研究和开发人脸表情识别算法。

2.4、CK+

CK+(Cohn-Kanade+)数据集是由Lucey等人于2010年发布的一个面部表情数据集。CK+数据集包含了593个视频序列,涵盖了8种不同的表情类别,包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶、中性和轻蔑。CK+数据集具有较高的标注准确率,提供了动态表情信息。

2.5、AffectNet

AffectNet 数据集:AffectNet是当前最大的面部表情数据集之一,包含约42万张标注了表情类别和面部活动单元(AU)信息的面部表情图像。每张图像都标注了表情类别和面部活动单元(AU)信息。AffectNet适合训练和评估深度学习模型,尤其是用于自然环境中的面部表情识别。

2.6、MMAFEDB

一共包含128K张MMA面部表情图像数据集,MMAFEDB包含用于训练,验证和测试的数据划分,每个目录包含对应于七个面部表情类别的七个子目录,分别是angry-愤怒,disgust-厌恶,fear-恐惧,happy-快乐,neutral-中性,sad-悲伤,surprise-惊讶

3、获取方式

收集整理不易,获取方式请点击我

相关推荐
weixin_468466851 天前
医学影像数据集汇总分享
深度学习·目标检测·数据集·图像分割·机器视觉·医学影像·ct影像
阿髙2 天前
ios的safari下载文件 文件名乱码
前端·axios·safari·下载
弗锐土豆4 天前
在windows系统中使用labelimg对图片进行标注之工具安装及简单使用
windows·安装·下载·使用·labelimg
数据岛12 天前
大模型应用的数字能源数据集
大数据·数据分析·数据集·能源
知来者逆14 天前
Octo—— 基于80万个机器人轨迹的预训练数据集用于训练通用机器人,可在零次拍摄中解决各种任务
人工智能·机器学习·机器人·数据集·大语言模型
数据猎手小k16 天前
EmoAva:首个大规模、高质量的文本到3D表情映射数据集。
人工智能·算法·3d·数据集·机器学习数据集·ai大模型应用
nachifur18 天前
pytorch 模型下载,from torchvision.datasets.utils import download_url不能下载模型,如何代理
pytorch·模型·下载
数据猎手小k19 天前
GEOBench-VLM:专为地理空间任务设计的视觉-语言模型基准测试数据集
人工智能·语言模型·自然语言处理·数据集·机器学习数据集·ai大模型应用
dundunmm19 天前
论文阅读之方法: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
论文阅读·数据挖掘·数据集·聚类·单细胞·细胞聚类·细胞测序
数据猎手小k19 天前
BioDeepAV:一个多模态基准数据集,包含超过1600个深度伪造视频,用于评估深度伪造检测器在面对未知生成器时的性能。
人工智能·算法·数据集·音视频·机器学习数据集·ai大模型应用