面部表情数据集合集——需要的点进来

文章目录

1、基本介绍

收集并整理了面部表情识别(Facial Emotion Recognition,FER)相关的数据集,包括FER2013数据集、FERPLUS数据集、RAF数据集、CK+数据集,MMAFEDB数据集,AffectNet数据集。

2、每个数据集介绍

2.1、FER2013(已预处理)

Fer2013是由Goodfellow等人于2013年发布的广泛使用的表情识别数据集。它包含约35,000张灰度图像,这些图像来自互联网公开资源,涵盖了7种不同的表情类别(愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性)。Fer2013数据集的多样性和规模使其成为训练深度学习模型的理想选择。

2.2、FERPLUS(已预处理)

FER+ 注释为标准的 Emotion FER 数据集提供了一组新的标签。在 FER+ 中,每张图片都有10个众包标签,这比原始的FER标签提供了更好的静态图像情感的真相。每个图像有10个标记,研究人员就可以估计每张脸的情绪概率分布。这允许构建产生统计分布或多标签输出的算法,而不是传统的单标签输出.

2.3、RAF

RAF-DB人脸表情数据集是一个用于面部表情识别数据集。该数据集包含了丰富的训练和验证数据,适用于研究和开发人脸表情识别算法。

2.4、CK+

CK+(Cohn-Kanade+)数据集是由Lucey等人于2010年发布的一个面部表情数据集。CK+数据集包含了593个视频序列,涵盖了8种不同的表情类别,包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶、中性和轻蔑。CK+数据集具有较高的标注准确率,提供了动态表情信息。

2.5、AffectNet

AffectNet 数据集:AffectNet是当前最大的面部表情数据集之一,包含约42万张标注了表情类别和面部活动单元(AU)信息的面部表情图像。每张图像都标注了表情类别和面部活动单元(AU)信息。AffectNet适合训练和评估深度学习模型,尤其是用于自然环境中的面部表情识别。

2.6、MMAFEDB

一共包含128K张MMA面部表情图像数据集,MMAFEDB包含用于训练,验证和测试的数据划分,每个目录包含对应于七个面部表情类别的七个子目录,分别是angry-愤怒,disgust-厌恶,fear-恐惧,happy-快乐,neutral-中性,sad-悲伤,surprise-惊讶

3、获取方式

收集整理不易,获取方式请点击我

相关推荐
玩电脑的辣条哥2 天前
什么是alpaca 或 sharegpt 格式的数据集?
lora·微调·数据集
地理探险家5 天前
各类有关NBA数据统计数据集大合集
数据库·数据集·数据·nba·赛季
数据猎手小k7 天前
FoMo 数据集是一个专注于机器人在季节性积雪变化环境中的导航数据集,记录了不同季节(无雪、浅雪、深雪)下的传感器数据和轨迹信息。
机器人·数据集·传感器·机器人导航·机器学习数据集
IoOozZzzz14 天前
如何让Steam下载速度解除封印?!
网络·智能路由器·下载·技巧·steam·冷知识
生信研究猿19 天前
数据集下载(AER 和causaldata R包)
r语言·数据集
OpenBayes1 个月前
OpenBayes 一周速览|1分钟生成完整音乐,DiffRhythm人声伴奏一键搞定; Stable Virtual Camera重塑3D视频创作
人工智能·深度学习·数据集·llama·视频生成·推理·蛋白质突变
黎明鱼儿1 个月前
LLaMA-Factory 数据集成从入门到精通
数据集·大模型微调·llama-factory
mozun20201 个月前
无人机等非合作目标公开数据集2025.4.3
数据集·无人机·空间目标·微波·可见光
dundunmm1 个月前
【数据集】Romanov数据集
人工智能·机器学习·支持向量机·数据挖掘·数据集·单细胞数据集
zew10409945882 个月前
基于深度学习的手势识别系统设计
人工智能·深度学习·算法·数据集·pyqt·yolov5·训练模型