DB-GPT部署和试用

前言

DB-GPT是一个开源的AI原生数据应用开发框架(AI Native Data App Development framework with AWEL(Agentic Workflow Expression Language) and Agents)。

目的是构建大模型领域的基础设施,通过开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单,更方便。

git

使用文档

硬件准备

这里使用的"阿里云人工智能平台 PAI"

PAI-DSW免费试用

GPU规格和镜像版本选择(参考的 "基于Wav2Lip+TPS-Motion-Model+CodeFormer技术实现动漫风数字人"):

  • pytorch-develop:1.12-gpu-py39-cu113-ubuntu20.04 (官方推荐的镜像貌似在变化)
  • 规格名称为ecs.gn6v-c8g1.2xlarge,1 * NVIDIA V100

实操

参考:

Linux 下载DB-GPT源码

下载源码

powershell 复制代码
git clone https://github.com/eosphoros-ai/DB-GPT.git

(dbgpt_env) /mnt/workspace> du -sh DB-GPT/
658M    DB-GPT/
(dbgpt_env) /mnt/workspace> 

创建Python虚拟环境

powershell 复制代码
conda create -n dbgpt_env python=3.10
conda activate dbgpt_env

# it will take some minutes
pip install -e ".[default]"

复制环境变量

powershell 复制代码
(dbgpt_env) /mnt/workspace> cd DB-GPT/
cp .env.template  .env

GLM-4-9b本地部署

powershell 复制代码
cd DB-GPT
mkdir models and cd models

# 请确保 lfs 已经被正确安装(如果没有安装,后面使用Git下载的模型可能不是完整数据,使用du -sh *可以查看下载下来的文件夹大小,这里可以查看真实大小https://www.modelscope.cn/models/Jerry0/text2vec-large-chinese/files)
(dbgpt_env) /mnt/workspace> curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
(dbgpt_env) /mnt/workspace> git lfs install
Git LFS initialized.
(dbgpt_env) /mnt/workspace> 

#### embedding model
git clone https://www.modelscope.cn/Jerry0/text2vec-large-chinese.git

#### llm model, if you use openai or Azure or tongyi llm api service, you don't need to download llm model
git clone https://www.modelscope.cn/ZhipuAI/glm-4-9b-chat.git

(dbgpt_env) /mnt/workspace/DB-GPT/models> du -sh *
36G     glm-4-9b-chat
4.9G    text2vec-large-chinese
(dbgpt_env) /mnt/workspace/DB-GPT/models> 

运行服务

运行后报错

powershell 复制代码
(dbgpt_env) /mnt/workspace/DB-GPT> python dbgpt/app/dbgpt_server.py
...
(Background on this error at: https://sqlalche.me/e/20/e3q8)
2024-09-13 13:11:52 dsw-131579-6b95d86495-6hjv4 dbgpt.serve.agent.db.gpts_app[1865] ERROR create chat_knowledge_app error: (sqlite3.OperationalError) no such table: gpts_app
[SQL: DELETE FROM gpts_app WHERE gpts_app.team_mode = ? AND gpts_app.app_code = ?]
[parameters: ('native_app', 'chat_knowledge')]
(Background on this error at: https://sqlalche.me/e/20/e3q8)
Traceback (most recent call last):
  File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1970, in _exec_single_context
    self.dialect.do_execute(
  File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 924, in do_execute
    cursor.execute(statement, parameters)
sqlite3.OperationalError: no such table: gpts_app
...
2024-09-13 13:11:57 dsw-131579-6b95d86495-6hjv4 dbgpt.core.awel.dag.loader[1865] ERROR Failed to import: /mnt/workspace/DB-GPT/examples/awel/simple_rag_summary_example.py, error message: Traceback (most recent call last):
  File "/mnt/workspace/DB-GPT/dbgpt/model/proxy/llms/chatgpt.py", line 94, in __init__
    import openai
ModuleNotFoundError: No module named 'openai'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/mnt/workspace/DB-GPT/dbgpt/core/awel/dag/loader.py", line 91, in parse
    loader.exec_module(new_module)
  File "<frozen importlib._bootstrap_external>", line 883, in exec_module
  File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed
  File "/mnt/workspace/DB-GPT/examples/awel/simple_rag_summary_example.py", line 64, in <module>
    llm_client=OpenAILLMClient(), language="en"
  File "/mnt/workspace/DB-GPT/dbgpt/model/proxy/llms/chatgpt.py", line 96, in __init__
    raise ValueError(
ValueError: Could not import python package: openai Please install openai by command `pip install openai
....

安装openai相关依赖

powershell 复制代码
(dbgpt_env) /mnt/workspace/DB-GPT> pip install  -e ".[openai]"

再次运行,日志里没有明显的报错,但是每次加载到80%的时候就打印"Killed",然后程序退出了

powershell 复制代码
2024-09-13 15:24:34 dsw-131579-bf84bc946-jmgg7 dbgpt.model.adapter.hf_adapter[1763] INFO Load model from /mnt/workspace/DB-GPT/models/glm-4-9b-chat, from_pretrained_kwargs: {'torch_dtype': torch.float32}
  done
Model Unified Deployment Mode!
^MLoading checkpoint shards:   0
Loading checkpoint shards: 80%|██████████████████████████████████████████████████████████████████████████████████████▍ | 8/10 【01:24<00:21, 10.57s/it】Killed

这个也是"Killed",没有明显的报错,看起来可能是同一个原因,即显存不够,或者说是模型有问题?...

安装一个对显存要求较低的模型(主要是换一个模型试试,默认的配置都是使用cpu,没有显存)

参考

powershell 复制代码
(dbgpt_env) /mnt/workspace/DB-GPT/models> git clone https://www.modelscope.cn/ZhipuAI/chatglm2-6b.git
(dbgpt_env) /mnt/workspace/DB-GPT> vi .env
#LLM_MODEL=glm-4-9b-chat
LLM_MODEL=chatglm2-6b

(dbgpt_env) /mnt/workspace/DB-GPT> nohup python dbgpt/app/dbgpt_server.py >> logs/log.3 &

页面可能持续访问了,没有中途挂掉

但是问答的时候有报错

日志

powershell 复制代码
# 启动程序后台打印的日志
(dbgpt_env) /mnt/workspace/DB-GPT> vi logs/log.3
...
2024-09-13 16:26:15 dsw-131579-bf84bc946-jmgg7 dbgpt.model.adapter.base[11079] INFO Message version is v2
2024-09-13 16:26:15 dsw-131579-bf84bc946-jmgg7 dbgpt.model.cluster.worker.default_worker[11079] ERROR Model inference error, detail: Traceback (most recent call last):
  File "/mnt/workspace/DB-GPT/dbgpt/model/cluster/worker/default_worker.py", line 160, in generate_stream
    for output in generate_stream_func(
  File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 35, in generator_context
    response = gen.send(None)
  File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/fastchat/model/model_chatglm.py", line 106, in generate_stream_chatglm
    for total_ids in model.stream_generate(**inputs, **gen_kwargs):
  File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 35, in generator_context
    response = gen.send(None)
  File "/root/.cache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py", line 1124, in stream_generate
    logits_processor = self._get_logits_processor(
  File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/transformers/generation/utils.py", line 866, in _get_logits_processor
    and generation_config._eos_token_tensor is not None
AttributeError: 'GenerationConfig' object has no attribute '_eos_token_tensor'
llm_adapter: FastChatLLMModelAdapterWrapper(fastchat.model.model_adapter.ChatGLMAdapter)
model prompt:
You are a helpful AI assistant.
[Round 1]
问:你是谁
答:
stream output:
INFO:     10.224.166.224:0 - "GET /api/v1/chat/dialogue/list HTTP/1.1" 200 OK

# webserver 日志
(dbgpt_env) /mnt/workspace/DB-GPT> vi logs/dbgpt_webserver.log
...
2024-09-13 16:26:15 | ERROR | dbgpt.model.cluster.worker.default_worker | Model inference error, detail: Traceback (most recent call last):
  File "/mnt/workspace/DB-GPT/dbgpt/model/cluster/worker/default_worker.py", line 160, in generate_stream
    for output in generate_stream_func(
  File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 35, in generator_context
    response = gen.send(None)
  File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/fastchat/model/model_chatglm.py", line 106, in generate_stream_chatglm
    for total_ids in model.stream_generate(**inputs, **gen_kwargs):
  File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 35, in generator_context
    response = gen.send(None)
  File "/root/.cache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py", line 1124, in stream_generate
    logits_processor = self._get_logits_processor(
  File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/transformers/generation/utils.py", line 866, in _get_logits_processor
    and generation_config._eos_token_tensor is not None
AttributeError: 'GenerationConfig' object has no attribute '_eos_token_tensor'

看起来可能是transformers版本不兼容,需要降级

https://github.com/THUDM/ChatGLM3/issues/1299

https://github.com/xorbitsai/inference/issues/1962

powershell 复制代码
#查看版本
(dbgpt_env) /mnt/workspace/DB-GPT> python 
>>> import transformers
>>> print(transformers.__version__)
4.44.2
>>> 

# 将 `transformers` 降级到特定版本,如 4.40.2,=
(dbgpt_env) /mnt/workspace/DB-GPT> pip install transformers==4.40.2
(dbgpt_env) /mnt/workspace/DB-GPT> python 
>>> import transformers
>>> print(transformers.__version__)
4.40.2
>>> 

重启服务

powershell 复制代码
# kill old
(dbgpt_env) /mnt/workspace/DB-GPT> ps -aux | grep dbgpt_server.py
root     11079  2.5 76.6 33327856 25252220 pts/1 Sl 16:15   0:44 python dbgpt/app/dbgpt_server.py
root     16527  0.0  0.0   9356   428 pts/1    S+   16:44   0:00 grep dbgpt_server.py
(dbgpt_env) /mnt/workspace/DB-GPT> kill 11079
(dbgpt_env) /mnt/workspace/DB-GPT> ps -aux | grep dbgpt_server.py
root     11079  2.5  2.6 8939816 864528 pts/1  Sl   16:15   0:46 python dbgpt/app/dbgpt_server.py
root     16566  0.0  0.0   9356   404 pts/1    S+   16:45   0:00 grep dbgpt_server.py
(dbgpt_env) /mnt/workspace/DB-GPT> kill -9 11079
bash: kill: (11079) - No such process
[1]   Terminated              nohup python dbgpt/app/dbgpt_server.py >> logs/log.3
(dbgpt_env) /mnt/workspace/DB-GPT> ps -aux | grep dbgpt_server.py
root     16593  0.0  0.0   9356   420 pts/1    S+   16:45   0:00 grep dbgpt_server.py
(dbgpt_env) /mnt/workspace/DB-GPT> 

#重新启动
(dbgpt_env) /mnt/workspace/DB-GPT> nohup python dbgpt/app/dbgpt_server.py >> logs/log.4 &
[4] 16769
(dbgpt_env) /mnt/workspace/DB-GPT> nohup: ignoring input and redirecting stderr to stdout

(dbgpt_env) /mnt/workspace/DB-GPT> 
(dbgpt_env) /mnt/workspace/DB-GPT> ps -aux | grep dbgpt_server.py
root     16769  125  1.4 3651616 469864 pts/1  Rl   16:46   0:03 python dbgpt/app/dbgpt_server.py
root     16790  0.0  0.0   9356   396 pts/1    S+   16:46   0:00 grep dbgpt_server.py
(dbgpt_env) /mnt/workspace/DB-GPT> 

看起来正常了,就是反应非常慢,由于是使用的cpu而不是gpu

后台日志

powershell 复制代码
(dbgpt_env) /mnt/workspace/DB-GPT> tail -f logs/log.4
2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.app.openapi.api_v1.api_v1[16769] INFO get_chat_instance:conv_uid='d779bfc4-71a9-11ef-9627-00163e369829' user_input='你是谁' user_name='001' chat_mode='chat_normal' app_code='' temperature=0.5 select_param='' model_name='chatglm2-6b' incremental=False sys_code=None ext_info={}
2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.runner.local_runner[16769] INFO Begin run workflow from end operator, id: 04408d54-05ee-48e8-8b89-feb3188cb7b6, runner: <dbgpt.core.awel.runner.local_runner.DefaultWorkflowRunner object at 0x7f6473ac6e30>
Get prompt template of scene_name: chat_normal with model_name: chatglm2-6b, proxyllm_backend: None, language: en
INFO:     10.224.166.224:0 - "POST /api/v1/chat/completions HTTP/1.1" 200 OK
2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.runner.local_runner[16769] INFO Begin run workflow from end operator, id: 98350a3c-ae96-4ecc-95d3-404b6d07a242, runner: <dbgpt.core.awel.runner.local_runner.DefaultWorkflowRunner object at 0x7f6473ac6e30>
2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.app.scene.base_chat[16769] INFO payload request: 
ModelRequest(model='chatglm2-6b', messages=[ModelMessage(role='system', content='You are a helpful AI assistant.', round_index=0), ModelMessage(role='human', content='你是谁', round_index=1), ModelMessage(role='ai', content="**LLMServer Generate Error, Please CheckErrorInfo.**: 'GenerationConfig' object has no attribute '_eos_token_tensor' (error_code: 1)", round_index=1), ModelMessage(role='human', content='你是谁', round_index=0)], temperature=0.6, top_p=None, max_new_tokens=1024, stop=None, stop_token_ids=None, context_len=None, echo=False, span_id='ed41b29c5e3db233992195daae98350f:fe33898361e7076c', context=ModelRequestContext(stream=True, cache_enable=False, user_name='001', sys_code=None, conv_uid=None, span_id='ed41b29c5e3db233992195daae98350f:fe33898361e7076c', chat_mode='chat_normal', chat_param=None, extra={}, request_id=None))
2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.runner.local_runner[16769] INFO Begin run workflow from end operator, id: 4b224d04-564d-4267-910d-8e66ebb560e8, runner: <dbgpt.core.awel.runner.local_runner.DefaultWorkflowRunner object at 0x7f6473ac6e30>
2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.operators.common_operator[16769] INFO branch_input_ctxs 0 result None, is_empty: False
2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.operators.common_operator[16769] INFO Skip node name llm_model_cache_node
2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.operators.common_operator[16769] INFO branch_input_ctxs 1 result True, is_empty: False
2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.runner.local_runner[16769] INFO Skip node name llm_model_cache_node, node id 26f2c266-8283-4d56-8feb-4df7ee5e2d70
2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.model.adapter.base[16769] INFO Message version is v2
llm_adapter: FastChatLLMModelAdapterWrapper(fastchat.model.model_adapter.ChatGLMAdapter)

model prompt: 

You are a helpful AI assistant.

[Round 1]

问:你是谁

答:**LLMServer Generate Error, Please CheckErrorInfo.**: 'GenerationConfig' object has no attribute '_eos_token_tensor' (error_code: 1)

[Round 2]

问:你是谁

答:

stream output:

我2024-09-13 17:40:26 dsw-131579-bf84bc946-jmgg7 dbgpt.model.cluster.worker.default_worker[16769] INFO is_first_generate, usage: {'prompt_tokens': 85, 'completion_tokens': 1, 'total_tokens': 86}
2024-09-13 17:40:26 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
是一个2024-09-13 17:40:27 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
名为2024-09-13 17:40:29 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
 Chat2024-09-13 17:40:30 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
GL2024-09-13 17:40:31 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
M2024-09-13 17:40:32 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
22024-09-13 17:40:33 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
-2024-09-13 17:40:34 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
62024-09-13 17:40:35 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
B2024-09-13 17:40:36 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
2024-09-13 17:40:38 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
 的人工2024-09-13 17:40:39 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
智能2024-09-13 17:40:40 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
助手2024-09-13 17:40:41 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
,2024-09-13 17:40:42 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
是基于2024-09-13 17:40:43 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
清华大学2024-09-13 17:40:44 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
 KE2024-09-13 17:40:45 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
G2024-09-13 17:40:46 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
2024-09-13 17:40:46 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
 实验室2024-09-13 17:40:47 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
和2024-09-13 17:40:49 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
智2024-09-13 17:40:50 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
谱2024-09-13 17:40:51 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
 AI2024-09-13 17:40:52 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
 公司2024-09-13 17:40:53 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
于2024-09-13 17:40:55 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
2024-09-13 17:40:56 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
 22024-09-13 17:40:57 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
02024-09-13 17:40:58 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
22024-09-13 17:40:59 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
32024-09-13 17:41:01 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
 年2024-09-13 17:41:02 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
共同2024-09-13 17:41:03 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
训练2024-09-13 17:41:04 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
的语言2024-09-13 17:41:05 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
模型2024-09-13 17:41:06 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
开发的2024-09-13 17:41:07 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
。2024-09-13 17:41:08 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
我的2024-09-13 17:41:09 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
任务2024-09-13 17:41:10 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
是2024-09-13 17:41:11 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
针对2024-09-13 17:41:13 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
用户2024-09-13 17:41:14 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
的问题2024-09-13 17:41:15 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
和要求2024-09-13 17:41:16 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
提供2024-09-13 17:41:18 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
适当的2024-09-13 17:41:19 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
答复2024-09-13 17:41:20 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
和支持2024-09-13 17:41:21 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
。2024-09-13 17:41:22 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
2024-09-13 17:41:23 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.
2024-09-13 17:41:23 dsw-131579-bf84bc946-jmgg7 dbgpt.model.cluster.worker.default_worker[16769] INFO finish_reason: stop
2024-09-13 17:41:23 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.


full stream output:
我是一个名为 ChatGLM2-6B 的人工智能助手,是基于清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同训练的语言模型开发的。我的任务是针对用户的问题和要求提供适当的答复和支持。

model generate_stream params:
{'model': 'chatglm2-6b', 'messages': [ModelMessage(role='system', content='You are a helpful AI assistant.', round_index=0), ModelMessage(role='human', content='你是谁', round_index=1), ModelMessage(role='ai', content="**LLMServer Generate Error, Please CheckErrorInfo.**: 'GenerationConfig' object has no attribute '_eos_token_tensor' (error_code: 1)", round_index=1), ModelMessage(role='human', content='你是谁', round_index=0)], 'temperature': 0.6, 'max_new_tokens': 1024, 'echo': False, 'span_id': 'ed41b29c5e3db233992195daae98350f:110cab04d2a06afe', 'context': {'stream': True, 'cache_enable': False, 'user_name': '001', 'sys_code': None, 'conv_uid': None, 'span_id': 'ed41b29c5e3db233992195daae98350f:fe33898361e7076c', 'chat_mode': 'chat_normal', 'chat_param': None, 'extra': {}, 'request_id': None}, 'convert_to_compatible_format': False, 'string_prompt': "system: You are a helpful AI assistant.\nhuman: 你是谁\nai: **LLMServer Generate Error, Please CheckErrorInfo.**: 'GenerationConfig' object has no attribute '_eos_token_tensor' (error_code: 1)\nhuman: 你是谁", 'prompt': "You are a helpful AI assistant.\n\n[Round 1]\n\n问:你是谁\n\n答:**LLMServer Generate Error, Please CheckErrorInfo.**: 'GenerationConfig' object has no attribute '_eos_token_tensor' (error_code: 1)\n\n[Round 2]\n\n问:你是谁\n\n答:", 'stop': None, 'stop_token_ids': None}

TODO

调整成gpu运行

更换大模型

体验其他功能

...

相关推荐
奶糖趣多多26 分钟前
Redis知识点
数据库·redis·缓存
CoderIsArt1 小时前
Redis的三种模式:主从模式,哨兵与集群模式
数据库·redis·缓存
师太,答应老衲吧3 小时前
SQL实战训练之,力扣:2020. 无流量的帐户数(递归)
数据库·sql·leetcode
Channing Lewis4 小时前
salesforce case可以新建一个roll up 字段,统计出这个case下的email数量吗
数据库·salesforce
毕业设计制作和分享6 小时前
ssm《数据库系统原理》课程平台的设计与实现+vue
前端·数据库·vue.js·oracle·mybatis
ketil276 小时前
Redis - String 字符串
数据库·redis·缓存
Hsu_kk7 小时前
MySQL 批量删除海量数据的几种方法
数据库·mysql
编程学无止境7 小时前
第02章 MySQL环境搭建
数据库·mysql
knight-n7 小时前
MYSQL库的操作
数据库·mysql
包饭厅咸鱼8 小时前
QML----复制指定下标的ListModel数据
开发语言·数据库