分享一个通用OCR模型GOT-OCR2.0


通用OCR模型GOT-OCR2.0

在信息化快速发展的今天,光学字符识别(OCR)技术的应用越来越广泛。从文档数字化到自动化数据录入,OCR技术都发挥着重要作用。今天,我将为大家介绍一个开源的通用OCR模型------GOT-OCR2.0。

软件介绍

GOT-OCR2.0概述

GOT-OCR2.0一款高性能通用OCR模型。该模型在精度和速度上都有显著提升,能够处理各种类型的文本图像,包括手写体和印刷体。GOT-OCR2.0不仅支持多种语言,还具有良好的鲁棒性,适用于复杂场景下的文本识别。

特性与优势

  1. 高精度识别:GOT-OCR2.0通过引入先进的深度学习技术,实现了对各种字体和语言的高精度识别。
  2. 快速处理:该模型经过优化,能够在保证准确率的前提下,快速处理大量图像。
  3. 多场景适应:无论是文档、招牌还是手写文本,GOT-OCR2.0均能良好识别,适应性强。
  4. 开源与可扩展性:GOT-OCR2.0是一个开源项目,用户可以根据自己的需求对其进行定制和扩展。

使用

  1. 系统要求:确保你的计算机上安装了Python 3.6或以上版本,并且配置了相应的深度学习框架(如PyTorch或TensorFlow)。

  2. 克隆项目:在终端或命令行中执行以下命令,将GOT-OCR2.0项目克隆到本地:

    bash 复制代码
    git clone https://github.com/Ucas-HaoranWei/GOT-OCR2.0.git
    cd GOT-OCR2.0
  3. 安装依赖:使用以下命令安装所需的Python依赖:

    bash 复制代码
    pip install -r requirements.txt

以下是一些简单的使用示例,展示如何进行图像识别:

纯文本OCR:

python 复制代码
python3 GOT/demo/run_ocr_2.0.py  --model-name  /GOT_weights/  --image-file  /an/image/file.png  --type ocr

格式化文本OCR:

python 复制代码
python3 GOT/demo/run_ocr_2.0.py  --model-name  /GOT_weights/  --image-file  /an/image/file.png  --type format

细粒度OCR:

python 复制代码
python3 GOT/demo/run_ocr_2.0.py  --model-name  /GOT_weights/  --image-file  /an/image/file.png  --type format/ocr --box [x1,y1,x2,y2]
python3 GOT/demo/run_ocr_2.0.py  --model-name  /GOT_weights/  --image-file  /an/image/file.png  --type format/ocr --color red/green/blue

多样本随机裁剪OCR:

python 复制代码
python3 GOT/demo/run_ocr_2.0_crop.py  --model-name  /GOT_weights/ --image-file  /an/image/file.png 

多图片OCR (图片路径包含多个 .png 文件):

python 复制代码
python3 GOT/demo/run_ocr_2.0_crop.py  --model-name  /GOT_weights/ --image-file  /images/path/  --multi-page

渲染格式化OCR内容:

python 复制代码
python3 GOT/demo/run_ocr_2.0.py  --model-name  /GOT_weights/  --image-file  /an/image/file.png  --type format --render

总结

GOT-OCR2.0是一款功能强大且易于使用的通用OCR模型。它不仅在识别精度上表现优异,还具有较高的处理速度,适用于各种复杂场景的文本识别。通过简单的安装和配置,用户可以快速上手,并在自己的项目中应用OCR技术。开源的特性使得开发者可以根据需求进行定制,充分发挥模型的潜力。无论是学术研究还是实际应用,GOT-OCR2.0都能为你提供强有力的支持。如果你对OCR技术感兴趣,或者正在寻找合适的OCR解决方案,不妨试试GOT-OCR2.0。

相关推荐
AI人工智能+1 天前
从“海量文书”到“精准数据”:文档智能抽取重塑车险核心竞争力
nlp·ocr·文档抽取
Stara05111 天前
DeepSeek-OCR私有化部署—从零构建OCR服务环境
计算机视觉·docker·ocr·transformers·vllm·deepseek·光学符号识别
翔云 OCR API2 天前
人工智能驱动下的OCR API技术演进与实践应用
人工智能·ocr
探模之翼2 天前
深度解读 DeepSeek-OCR 论文:通过视觉模态实现高效文本压缩
大模型·ocr·deepseek-ocr
paopao_wu2 天前
DeepSeek-OCR实战(06):SpringBoot应用接入
java·spring boot·ai·ocr·deepseek
paopao_wu2 天前
DeepSeek-OCR实战(05):DeepSeek-OCR-WebUI部署(Docker)
docker·ai·容器·ocr
OpenBayes2 天前
教程上新丨Deepseek-OCR 以极少视觉 token 数在端到端模型中实现 SOTA
人工智能·深度学习·机器学习·ocr·大语言模型·文本处理·deepseek
kevin 12 天前
财报OCR录入识别软件准确率高吗?易道博识财报录入实测效果如何?
ocr
❀͜͡傀儡师2 天前
Docker 部署 DeepSeek-OCR 和WebUI
docker·容器·ocr
mit6.8243 天前
[Column#187] 10data_struct | IP速查表 | 协议&TCP&UDP | DeepSeek-OCR
tcp/ip·udp·ocr