深度学习02-pytorch-01-张量形状的改变

在 PyTorch 中,张量的形状(或称为形状变换 )可以通过多种方式进行改变,这有助于数据的重新排列、打平、扩展或压缩。常用的操作包括 view(), reshape(), transpose(), unsqueeze(), squeeze(), 和 permute() 等等。下面将详细介绍这些常见的形状改变方法。

1. view()

view() 是 PyTorch 中常用的形状变换函数,它可以改变张量的形状,但要求张量在内存中是连续存储的。

python 复制代码
import torch
tensor = torch.randn(2, 3, 4)  # 原始张量形状为 (2, 3, 4)
print(tensor.size())  # 输出: torch.Size([2, 3, 4])
​
# 使用 view 变换形状
reshaped_tensor = tensor.view(6, 4)  # 变为形状 (6, 4)
print(reshaped_tensor.size())  # 输出: torch.Size([6, 4])

注意:view() 只能用于在内存中连续的张量,如果内存不连续,会报错。可以使用 tensor.contiguous() 使其连续。

2. reshape()

reshape() 功能类似于 view(),但它会自动处理张量是否连续的问题,即使张量不连续,也能重新调整形状。

python 复制代码
reshaped_tensor = tensor.reshape(6, 4)  # 变为形状 (6, 4)
print(reshaped_tensor.size())  # 输出: torch.Size([6, 4])

3. transpose()

transpose() 交换两个维度的位置。它不改变张量的存储顺序,只是交换了维度的显示顺序。

python 复制代码
tensor = torch.randn(2, 3)  # 形状为 (2, 3)
transposed_tensor = tensor.transpose(0, 1)  # 交换第 0 维和第 1 维
print(transposed_tensor.size())  # 输出: torch.Size([3, 2])

4. permute()

permute() 可以按照指定顺序重排张量的所有维度。它比 transpose() 更灵活。

python 复制代码
tensor = torch.randn(2, 3, 4)  # 原始形状 (2, 3, 4)
permuted_tensor = tensor.permute(2, 0, 1)  # 将维度顺序调整为 (4, 2, 3)
print(permuted_tensor.size())  # 输出: torch.Size([4, 2, 3])

5. squeeze()

squeeze() 会移除张量中大小为 1 的维度。

python 复制代码
tensor = torch.randn(1, 3, 1, 4)  # 形状为 (1, 3, 1, 4)
squeezed_tensor = tensor.squeeze()  # 移除所有大小为 1 的维度
print(squeezed_tensor.size())  # 输出: torch.Size([3, 4])

你也可以指定要移除的维度:

python 复制代码
squeezed_tensor = tensor.squeeze(2)  # 只移除第 2 维(大小为 1)

6. unsqueeze()

unsqueeze() 用来在指定的位置增加一个大小为 1 的维度。它与 squeeze() 相反。

python 复制代码
tensor = torch.randn(3, 4)  # 形状为 (3, 4)
unsqueezed_tensor = tensor.unsqueeze(0)  # 在第 0 维添加一个大小为 1 的维度
print(unsqueezed_tensor.size())  # 输出: torch.Size([1, 3, 4])

7. flatten()

flatten() 用来将多维张量展平成一个一维张量。

python 复制代码
tensor = torch.randn(2, 3, 4)  # 形状为 (2, 3, 4)
flattened_tensor = tensor.flatten()  # 展平成一维张量
print(flattened_tensor.size())  # 输出: torch.Size([24])

你也可以指定展平的范围:

python 复制代码
flattened_tensor = tensor.flatten(start_dim=1)  # 从第 1 维开始展平
print(flattened_tensor.size())  # 输出: torch.Size([2, 12])

总结

  • view(): 改变张量形状,要求连续存储。

  • reshape(): 改变张量形状,处理连续与否问题。

  • transpose(): 交换两个维度。

  • permute(): 自由调整所有维度的顺序。

  • squeeze(): 移除大小为 1 的维度。

  • unsqueeze(): 添加大小为 1 的维度。

  • flatten(): 将张量展平为一维。

这些形状变换操作是 PyTorch 中常用的工具,有助于你更灵活地操作张量并适应深度模型的需求。

相关推荐
AndrewHZ2 小时前
【图像处理基石】什么是油画感?
图像处理·人工智能·算法·图像压缩·视频处理·超分辨率·去噪算法
Robot2513 小时前
「华为」人形机器人赛道投资首秀!
大数据·人工智能·科技·microsoft·华为·机器人
J先生x3 小时前
【IP101】图像处理进阶:从直方图均衡化到伽马变换,全面掌握图像增强技术
图像处理·人工智能·学习·算法·计算机视觉
Narutolxy5 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
浊酒南街5 小时前
TensorFlow中数据集的创建
人工智能·tensorflow
2301_787552877 小时前
console-chat-gpt开源程序是用于 AI Chat API 的 Python CLI
人工智能·python·gpt·开源·自动化
layneyao7 小时前
AI与自然语言处理(NLP):从BERT到GPT的演进
人工智能·自然语言处理·bert
jndingxin8 小时前
OpenCV 的 CUDA 模块中用于将多个单通道的 GpuMat 图像合并成一个多通道的图像 函数cv::cuda::merge
人工智能·opencv·计算机视觉
格林威8 小时前
Baumer工业相机堡盟工业相机的工业视觉中为什么偏爱“黑白相机”
开发语言·c++·人工智能·数码相机·计算机视觉
灬0灬灬0灬9 小时前
深度学习---常用优化器
人工智能·深度学习