医学数据分析实训 项目三 关联规则分析预备项目---购物车分析

文章目录

1 预备项目

关联规则分析实践---------购物车分析

python 复制代码
import warnings
import numpy as np
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
warnings.filterwarnings("ignore", category=DeprecationWarning)
# 读入数据
df_Retails = pd.read_excel('input/Online Retail.xlsx')
df_Retails.head()
python 复制代码
# 数据理解
print(df_Retails.shape)

df_Retails.columns

df_Retails.describe()


python 复制代码
#查看国家一列的取值
df_Retails.Country.unique()
#各国家的购物数量
df_Retails["Country"].value_counts()
#查看InvoiceNo一列中是否有重复的值
df_Retails.duplicated(subset=["InvoiceNo"]).any()
#是否有缺失值
df_Retails.isna().sum()
df_Retails['InvoiceNo'].isnull().sum(axis = 0)
python 复制代码
python 复制代码
#空格处理
df_Retails['Description'] = df_Retails['Description'].str.strip()
# Description: Product (item) name. Nominal.
#查看是否有缺失值
df_Retails['Description'].isna().sum()
#缺失值处理
df_Retails.dropna(axis=0
                  , subset=['Description']
                  , inplace=True)
print(df_Retails.shape)
#查看是否有缺失值
print(df_Retails['Description'].isna().sum())
#删除含有C字母的已取消订单
df_Retails['InvoiceNo'] = df_Retails['InvoiceNo'].astype('str')

df_Retails = df_Retails[~df_Retails['InvoiceNo'].str.contains('C')]
df_Retails.shape
python 复制代码
#将数据改为每一行一条购物记录
#考虑到内存限制只计算Germany,全部计算则计算量太大
df_ShoppingCarts = (df_Retails[df_Retails['Country'] =="Germany"]
                    .groupby(['InvoiceNo', 'Description'])['Quantity']
                    .sum()
                    .unstack()
                    .reset_index()
                    .fillna(0)
                    .set_index('InvoiceNo'))

print(df_ShoppingCarts.shape)

df_ShoppingCarts.head()
python 复制代码
#查看InvoiceNo一列中是否有重复的值
df_Retails.duplicated(subset=["InvoiceNo"]).any()

def encode_units(x):
    if x <= 0:
        return 0
    if x >= 1:
        return 1

df_ShoppingCarts_sets = df_ShoppingCarts.map(encode_units)

df_ShoppingCarts_sets.head()

1 产生频繁集

python 复制代码
# 产生频繁集 最小支持度为0.07, 在输出中使用原始列名
df_Frequent_Itemsets = apriori(df_ShoppingCarts_sets
                               , min_support=0.07
                               , use_colnames=True)
df_Frequent_Itemsets

2 产生关联规则

python 复制代码
# 生成关联规则,使用提升度(lift)作为度量 置提升度的最小阈值为 1,表示无正相关关系的规则也会被计算
df_AssociationRules = association_rules(df_Frequent_Itemsets
                                        , metric="lift"
                                        , min_threshold=1)
#输出结果的解读:https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/
df_AssociationRules.head()
python 复制代码
# 筛选关联规则 筛选提升度不小于 2 置信度不小于 0.8 的关联规则
df_A= df_AssociationRules[(df_AssociationRules['lift'] >= 2) &
                          (df_AssociationRules['confidence'] >= 0.8) ]
df_A
python 复制代码
# 可视化结果
import seaborn as sns
import matplotlib.pyplot as plt

sns.scatterplot(x = "support"
                , y = "confidence"
                , size = "lift"
                , data = df_AssociationRules)
plt.show()
相关推荐
淡酒交魂1 分钟前
「Flink」业务搭建方法总结
大数据·数据挖掘·数据分析
TDengine (老段)9 分钟前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
计算机毕设定制辅导-无忧学长1 天前
Grafana 与 InfluxDB 可视化深度集成(二)
信息可视化·数据分析·grafana
Jina AI1 天前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
瓦特what?1 天前
关于C++的#include的超超超详细讲解
java·开发语言·数据结构·c++·算法·信息可视化·数据挖掘
鹏多多.1 天前
flutter-使用device_info_plus获取手机设备信息完整指南
android·前端·flutter·ios·数据分析·前端框架
芦骁骏2 天前
自动处理考勤表——如何使用Power Query,步步为营,一点点探索自定义函数
数据分析·excel·powerbi
柑木2 天前
隐私计算-SecretFlow/SCQL-SCQL的两种部署模式
后端·安全·数据分析
计算机源码社2 天前
分享一个基于Hadoop的二手房销售签约数据分析与可视化系统,基于Python可视化的二手房销售数据分析平台
大数据·hadoop·python·数据分析·毕业设计项目·毕业设计源码·计算机毕设选题
楚韵天工2 天前
基于多分类的工业异常声检测及应用
人工智能·深度学习·神经网络·目标检测·机器学习·分类·数据挖掘