医学数据分析实训 项目三 关联规则分析预备项目---购物车分析

文章目录

1 预备项目

关联规则分析实践---------购物车分析

python 复制代码
import warnings
import numpy as np
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
warnings.filterwarnings("ignore", category=DeprecationWarning)
# 读入数据
df_Retails = pd.read_excel('input/Online Retail.xlsx')
df_Retails.head()
python 复制代码
# 数据理解
print(df_Retails.shape)

df_Retails.columns

df_Retails.describe()


python 复制代码
#查看国家一列的取值
df_Retails.Country.unique()
#各国家的购物数量
df_Retails["Country"].value_counts()
#查看InvoiceNo一列中是否有重复的值
df_Retails.duplicated(subset=["InvoiceNo"]).any()
#是否有缺失值
df_Retails.isna().sum()
df_Retails['InvoiceNo'].isnull().sum(axis = 0)
python 复制代码
python 复制代码
#空格处理
df_Retails['Description'] = df_Retails['Description'].str.strip()
# Description: Product (item) name. Nominal.
#查看是否有缺失值
df_Retails['Description'].isna().sum()
#缺失值处理
df_Retails.dropna(axis=0
                  , subset=['Description']
                  , inplace=True)
print(df_Retails.shape)
#查看是否有缺失值
print(df_Retails['Description'].isna().sum())
#删除含有C字母的已取消订单
df_Retails['InvoiceNo'] = df_Retails['InvoiceNo'].astype('str')

df_Retails = df_Retails[~df_Retails['InvoiceNo'].str.contains('C')]
df_Retails.shape
python 复制代码
#将数据改为每一行一条购物记录
#考虑到内存限制只计算Germany,全部计算则计算量太大
df_ShoppingCarts = (df_Retails[df_Retails['Country'] =="Germany"]
                    .groupby(['InvoiceNo', 'Description'])['Quantity']
                    .sum()
                    .unstack()
                    .reset_index()
                    .fillna(0)
                    .set_index('InvoiceNo'))

print(df_ShoppingCarts.shape)

df_ShoppingCarts.head()
python 复制代码
#查看InvoiceNo一列中是否有重复的值
df_Retails.duplicated(subset=["InvoiceNo"]).any()

def encode_units(x):
    if x <= 0:
        return 0
    if x >= 1:
        return 1

df_ShoppingCarts_sets = df_ShoppingCarts.map(encode_units)

df_ShoppingCarts_sets.head()

1 产生频繁集

python 复制代码
# 产生频繁集 最小支持度为0.07, 在输出中使用原始列名
df_Frequent_Itemsets = apriori(df_ShoppingCarts_sets
                               , min_support=0.07
                               , use_colnames=True)
df_Frequent_Itemsets

2 产生关联规则

python 复制代码
# 生成关联规则,使用提升度(lift)作为度量 置提升度的最小阈值为 1,表示无正相关关系的规则也会被计算
df_AssociationRules = association_rules(df_Frequent_Itemsets
                                        , metric="lift"
                                        , min_threshold=1)
#输出结果的解读:https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/
df_AssociationRules.head()
python 复制代码
# 筛选关联规则 筛选提升度不小于 2 置信度不小于 0.8 的关联规则
df_A= df_AssociationRules[(df_AssociationRules['lift'] >= 2) &
                          (df_AssociationRules['confidence'] >= 0.8) ]
df_A
python 复制代码
# 可视化结果
import seaborn as sns
import matplotlib.pyplot as plt

sns.scatterplot(x = "support"
                , y = "confidence"
                , size = "lift"
                , data = df_AssociationRules)
plt.show()
相关推荐
qq_22589174663 小时前
基于Python+Django餐饮评论大数据分析与智能推荐系统 毕业论文
开发语言·后端·python·信息可视化·数据分析·django
龙腾AI白云4 小时前
国内外具身智能VLA模型深度解析(3)
深度学习·数据挖掘
xuehaikj5 小时前
文档类型识别与分类_yolo13-C3k2-SFSConv实现详解
人工智能·数据挖掘
蒋星熠11 小时前
实证分析:数据驱动决策的技术实践指南
大数据·python·数据挖掘·数据分析·需求分析
谅望者16 小时前
数据分析笔记14:Python文件操作
大数据·数据库·笔记·python·数据挖掘·数据分析
观远数据16 小时前
数据驱动零售新生态:观远BI打造终端经营“透视镜”
大数据·人工智能·信息可视化·数据分析·零售
思通数科人工智能大模型16 小时前
零售场景下的数智店商:解决盗损问题,化解隐性成本痛点
人工智能·目标检测·计算机视觉·数据挖掘·知识图谱·零售
源码之家18 小时前
基于python租房大数据分析系统 房屋数据分析推荐 scrapy爬虫+可视化大屏 贝壳租房网 计算机毕业设计 推荐系统(源码+文档)✅
大数据·爬虫·python·scrapy·数据分析·推荐算法·租房
源码之家18 小时前
机器学习:基于python租房推荐系统 预测算法 协同过滤推荐算法 房源信息 可视化 机器学习-线性回归预测模型 Flask框架(源码+文档)✅
大数据·python·算法·机器学习·数据分析·线性回归·推荐算法
阿里云大数据AI技术21 小时前
基于 Hologres 构建智能驾驶图像高性能分析系统
数据分析