自2022年GPT(Generative Pre-trained Transformer)大语言模型的发布以来,它以其卓越的自然语言处理能力和广泛的应用潜力,在学术界和工业界掀起了一场革命。在短短一年多的时间里,GPT已经在多个领域展现出其独特的价值,特别是在数据统计分析领域。GPT的介入为数据处理、模型构建和结果解释带来了前所未有的便利。与此同时,R语言凭借其开源、自由、免费的特性,成为了统计分析和数据可视化的主流工具。R语言的丰富程序包生态系统和强大的社区支持,使其在处理复杂数据分析任务时表现出色。GPT大语言模型在助力利用R语言开展数据统计分析方面有着令人遐想的广阔空间。然而,生态环境领域数据往往具有高度的复杂性和异质性,这要求分析者不仅要有扎实的统计学基础,还需要能够灵活运用各种统计模型和方法。GPT在这方面展现出巨大的潜力,它不仅能够帮助研究者理解和选择合适的统计模型,还能在数据分析过程中提供实时的指导和建议,极大地提高了研究效率。
本训练营内容涵盖了从生态环境领域数据特点及统计方法介绍、GPT入门到GPT辅助R语言基础;数据准备及ggplot 绘图基础;回归和混合效应模型(包含方差分析、协方差分析);多元统计分析(排序、聚类和分组差异检验);随机森林模型;结构方程模型;非线性关系数据分析;Meta分析及贝叶斯回归与混合效应模型等一系列专题及实战案例。每一专题或案例都精心设计,以确保您不仅能够理解各统计模型的基本原理,还能够在GPT的辅助下,有效地开展实际数据分析,轻松应对科研工作中复杂数据局面,提高数据分析能力和效率。训练营共分为5个单元,包含14个专题,计划授课4天,具体如下:
赠送国内可直接登录一个月ChatGPT4.0账号【无需科学上网】。
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 第一单元 : 生态环境数据统计概述及基础 |
| 1.1 生态环境数据特点及统计方法介绍 1.生态环境数据复杂性和多样性 2.生态环境数据类型及分布特点 3.生态环境数据主要统计分析方法及统计检验(t-检验、F检验、卡方检验) 4.如何根据数据类型、特点及结构选择合适的统计方法 |
| 1.2 GPT大语言模型简介及使用入门 1.GPT大语言模型简介:定义、架构及发展历程 2.GPT大语言模型使用入门 3.GPT大语言模型提示词(prompt) 1)提示词基本语法及应用 2)提高大语言模型回答质量策略 4.让GPT成为科研助手:文献综述;实验设计;数据分析。。。。 5.GPT与R语言结合开展数据分析优势 |
| 1.3 GPT&R:R语言入门 1.GPT辅助安装与配置R和RStudio 2.GPT辅助学习R语言程序包和函数用途和用法 3.GPT辅助学习R中变量、数据类型、函数等 4.GPT辅助开展R语言数据基本操作 |
| 1.4 GPT&R:生态环境数据准备及绘图基础 1.生态环境数据类型及常见数据资源 2.GPT辅助生态环境数据整理及清洗 3.GPT辅助生态环境数据探索 4.GPT辅助ggplot2绘图 1) 基础绘图类型:散点图、箱线图、频率图、提琴图、峰峦图、相关图等 2) 高级绘图技巧: 多图组合、排版及生成高质量图(论文发表) |
| 第 二 单元 :GPT&R:回归与混合效应模型 |
| 2.1 一般和广义线性回归模型(lm&glm) 1.一般线性模型和广义线性模型介绍:基本原理、假设条件及应用情景等 2.GPT辅助一般线性模型(lm)R语言实现 1)回归模型 2)方差分析 3)协方差分析 4)模型诊断 5)模型选择(逐步回归) 3.GPT辅助广义线性模型(glm)R语言实现 1) 广义回归模型、链接函数、分布族、模型比较 2) 逻辑斯蒂回归(0,1数据) 3) 泊松回归(计数数据):泊松、负二项分布、零膨胀、零截断 |
| 2.2 线性和广义线性混合效应模型(lmm&glmm) 1.混合效应模型简介:嵌套数据、固定效应、随机效应等基本概念 2.GPT辅助线性混合效应模型(lmm) 1)模型构建:模型类型确定(随机截距/随机截距)、模型比较和诊断 2)模型结果解读、描述及作图 3.GPT辅助广义线性混合效应模型(glmm) 1)根据数据特征选择合适的广义线性混合模型误差分布及程序包 2) 二项分布(0,1)混合效应模型:数据检查、模型构建、结果展示 3)计数数据混合效应模型:泊松、过度离散、零膨胀及零截断 4.GPT辅助混合效应模型的模型选择(模型average) |
| 2.3相关数据分析:空间、时间及系统发育相关 1.回归模型数据自相关问题及简介 2.GPT辅助空间自相关数据分析案例:模型构建、模型比较、模型诊断等 3.GPT辅助时间自相关数据分析案例:模型构建、模型比较、模型诊断等 4.GPT辅助系统发育相关数据分析案例:模型构建、模型比较、模型诊断等 |
| 第 三 单元 :GPT & R:多元统计分析 |
| 3.1 多元统计中的排序分析 1.多元统计分析技术在生态环境数据分析应用简介 2.GPT辅助多元统计中的排序分析 1)非约束排序(PCA、PCoA、NMDS)分析:模型选择、结果解读及绘图 2)约束排序(RDA、db-RDA)分析:数据筛选、变量选择、结果解读及绘图 |
| 3.2多元统计中的聚类分析及分组差异检验 1.GPT辅助多元统计中的聚类分析 1)层次聚类(hclust):数据检查、聚类聚类质量评估、结果解读及绘图 2)非层次聚类(kmeans):数据检查、聚类聚类质量评估、结果解读及绘图 2.GPT辅助多元统计中的分组差异检验 1)非参数多元方差分析(PERMANOVA)分析 2)非参数多元方差分析(PERMANOVA)与非约束排序(PCoA)结合 |
| 3.3多元统计中机器学习:随机森林(Random Forest,RF)模型 1.随机森林模型简介 2.GPT辅助随机森林模型分类案例:模型构建、交叉验证、变量重要性评估等 3.GPT辅助随机森林模型回归案例:模型构建、交叉验证、变量重要性评估等 |
| 第 四 单元 :GPT&R:结构方程模型(SEM)(lavaan) |
| 1.结构方程模型(SEM)基本原理 2.GPT辅助结构方程模型(lavaan)分析 1) 初始模型构建 2) 模型调整 3) 模型评估及结果表达 3.GPT辅助潜变量(latent)分析 4.GPT辅助复合变量(composite)分析 |
| 第 五 单元 :GPT&R:其他统计模型或方法 |
| 5.1 GPT辅助非线性数据分析 1.非线性数据分析简介:广义可加模型 VS 非线性模型 2.广义可加模型(GAM)案例:模型构建、模型诊断、结果绘图等 3.非线性模型(NLM)案例:模型构建、参数设置等 |
| 5.2 GPT辅助Meta分析(Meta-analysis) 1.Meta分析基本原理 2.Meta分析效应值选则与计算 3.Meta分析效应值(累积/平均):随机效应模型、固定效应模型、森林图等 4.Meta分析解释变量引入(分类/连续变量)及结果绘图 5.Meta分析模型诊断:发表偏爱性、失安全系数等 |
| 5.3 GPT辅助贝叶斯回归与混合模型 1.贝叶斯回归和混合效应模型简介 2.贝叶斯回归模型案例:模型构建、模型诊断及结果绘图 3.贝叶斯混合效应模型案例:模型构建、模型诊断及结果绘图 |