变电站缺陷数据集8307张,带xml标注和txt标注,可以直接用于yolo训练

变电站缺陷数据集8307张,

带xml标注和txt标注,可以直接用于yolo训练,赠附五个脚本

变电站缺陷数据集

数据集概述

变电站缺陷数据集是一个专门针对变电站设备和环境缺陷检测的图像数据集。该数据集包含了8307张经过标注的图像,旨在通过机器学习和计算机视觉技术来识别和分类变电站中的各种缺陷,如设备损坏、异常行为等。数据集同时提供了XML和TXT两种标注格式,可以直接用于YOLO系列目标检测模型的训练。

数据集特点
  1. 全面性:数据集涵盖了变电站设备的各种缺陷类型,包括但不限于设备损坏、异常行为等。
  2. 详细标注:每张图像都带有详细的标注信息,包括对象的类别、边界框坐标等。
  3. 兼容性强:提供了XML和TXT两种标注格式,既适合传统的基于XML的标注方式,也方便YOLO模型的直接使用。
  4. 实用性:数据集可以直接应用于变电站的安全监控和设备维护,帮助及时发现并处理潜在的安全隐患。
数据集构成
  • 图像数量:8307张
  • 标注格式
    • XML格式:适用于多种基于XML的标注工具和模型训练。
    • TXT格式:适用于YOLO系列目标检测模型的训练。
数据集用途
  • 缺陷检测:用于训练和测试识别变电站中设备缺陷的算法。
  • 安全监控:在实际应用中,可以用于自动化监控变电站设备的状态,及时发现并处理安全隐患。
  • 故障预防:帮助电力部门提前预警,减少由于设备缺陷导致的事故风险。
  • 研究与开发:为研究人员提供一个基准数据集,用于比较不同算法的效果。
  • 教育与培训:作为教学资源,帮助学生理解计算机视觉和机器学习的基本概念。
数据集获取

变电站缺陷数据集可以从相关的科研机构、数据提供商或者通过开源社区获取。获取数据集时,请遵循数据集发布的许可协议,确保合法使用。

示例代码

下面是一个简单的示例代码,展示了如何使用Python加载和预览变电站缺陷数据集中的图像及其XML格式的标注信息。

1import os
2import random
3import xml.etree.ElementTree as ET
4import matplotlib.pyplot as plt
5from PIL import Image
6
7# 数据集目录路径
8data_dir = 'path/to/transformer_station_defect_dataset'
9image_dir = os.path.join(data_dir, 'images')
10annotation_dir = os.path.join(data_dir, 'annotations_xml')
11
12# 随机选择一张图像
13image_files = os.listdir(image_dir)
14image_file = random.choice(image_files)
15image_path = os.path.join(image_dir, image_file)
16
17# 加载图像
18image = Image.open(image_path)
19
20# 加载XML标注
21xml_file = os.path.splitext(image_file)[0] + '.xml'
22xml_path = os.path.join(annotation_dir, xml_file)
23tree = ET.parse(xml_path)
24root = tree.getroot()
25
26# 绘制边界框
27fig, ax = plt.subplots(1, figsize=(10, 10))
28ax.imshow(image)
29ax.axis('off')
30
31for obj in root.findall('object'):
32    bbox = obj.find('bndbox')
33    xmin = int(bbox.find('xmin').text)
34    ymin = int(bbox.find('ymin').text)
35    xmax = int(bbox.find('xmax').text)
36    ymax = int(bbox.find('ymax').text)
37    label = obj.find('name').text
38    
39    ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, edgecolor='r', facecolor='none'))
40    ax.text(xmin, ymin, label, color='r', fontsize=8)
41
42plt.show()
YOLO标注格式转换

如果您需要将XML格式的标注转换为YOLO所需的TXT格式,可以使用以下Python代码示例:

1import os
2import xml.etree.ElementTree as ET
3
4# 数据集目录路径
5data_dir = 'path/to/transformer_station_defect_dataset'
6annotation_dir_xml = os.path.join(data_dir, 'annotations_xml')
7annotation_dir_yolo = os.path.join(data_dir, 'annotations_yolo')
8
9if not os.path.exists(annotation_dir_yolo):
10    os.makedirs(annotation_dir_yolo)
11
12# 类别映射字典
13class_map = {
14    'defect_type_1': 0,  # 替换为实际的类别名和索引
15    'defect_type_2': 1,
16    # 添加更多的类别
17}
18
19for xml_file in os.listdir(annotation_dir_xml):
20    if not xml_file.endswith('.xml'):
21        continue
22    
23    tree = ET.parse(os.path.join(annotation_dir_xml, xml_file))
24    root = tree.getroot()
25    
26    image_width = int(root.find('size/width').text)
27    image_height = int(root.find('size/height').text)
28    
29    with open(os.path.join(annotation_dir_yolo, os.path.splitext(xml_file)[0] + '.txt'), 'w') as f:
30        for obj in root.findall('object'):
31            label = obj.find('name').text.lower().strip()
32            if label in class_map:
33                class_id = class_map[label]
34                
35                bbox = obj.find('bndbox')
36                xmin = int(bbox.find('xmin').text)
37                ymin = int(bbox.find('ymin').text)
38                xmax = int(bbox.find('xmax').text)
39                ymax = int(bbox.find('ymax').text)
40                
41                x_center = (xmin + xmax) / 2.0
42                y_center = (ymin + ymax) / 2.0
43                w = xmax - xmin
44                h = ymax - ymin
45                
46                x_center /= image_width
47                y_center /= image_height
48                w /= image_width
49                h /= image_height
50                
51                f.write(f"{class_id} {x_center:.6f} {y_center:.6f} {w:.6f} {h:.6f}\n")

总结

此变电站缺陷数据集是一个高质量的数据集,涵盖了变电站设备的多种缺陷类型。数据集的特点是全面性、详细标注和兼容性强,能够满足不同研究需求。通过使用该数据集,研究者可以在变电站安全监控和设备维护领域推动技术进步,提高工作效率和安全性。

相关推荐
weixin_468466851 天前
医学影像数据集汇总分享
深度学习·目标检测·数据集·图像分割·机器视觉·医学影像·ct影像
数据岛12 天前
大模型应用的数字能源数据集
大数据·数据分析·数据集·能源
知来者逆15 天前
Octo—— 基于80万个机器人轨迹的预训练数据集用于训练通用机器人,可在零次拍摄中解决各种任务
人工智能·机器学习·机器人·数据集·大语言模型
数据猎手小k16 天前
EmoAva:首个大规模、高质量的文本到3D表情映射数据集。
人工智能·算法·3d·数据集·机器学习数据集·ai大模型应用
数据猎手小k19 天前
GEOBench-VLM:专为地理空间任务设计的视觉-语言模型基准测试数据集
人工智能·语言模型·自然语言处理·数据集·机器学习数据集·ai大模型应用
dundunmm19 天前
论文阅读之方法: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
论文阅读·数据挖掘·数据集·聚类·单细胞·细胞聚类·细胞测序
数据猎手小k19 天前
BioDeepAV:一个多模态基准数据集,包含超过1600个深度伪造视频,用于评估深度伪造检测器在面对未知生成器时的性能。
人工智能·算法·数据集·音视频·机器学习数据集·ai大模型应用
数据猎手小k20 天前
HNTS-MRG 2024 Challenge:是一个包含200个头颈癌病例的磁共振图像及其标注的公开数据集,旨在推动AI在头颈癌放射治疗自动分割领域的研究。
人工智能·数据集·机器学习数据集·ai大模型应用
数据猎手小k1 个月前
OSPTrack:一个包含多个生态系统中软件包执行时生成的静态和动态特征的标记数据集,用于识别开源软件中的恶意行为。
数据集·开源软件·机器学习数据集·ai大模型应用
HyperAI超神经1 个月前
NeurIPS 2024 有效投稿达 15,671 篇,数据集版块内容丰富
人工智能·开源·自动驾驶·数据集·多模态·化学光谱·neurips 2024