《机器学习》—— 经典机器学习算法的导入方法

文章目录

在Python中,传统机器学习算法主要通过一些流行的库来调用和实现,其中最著名的是scikit-learn(简称sklearn)。 scikit-learn提供了大量的算法和工具,用于数据挖掘和数据分析,包括分类、回归、聚类、降维等。以下是一些常见算法的导入示例:
scikit-learn中,如果你只需要导入某个具体的算法而不立即使用它(比如,先导入算法,然后在其他地方或稍后使用),你可以直接从 scikit-learn的相应模块中导入该算法。以下是一些常见算法的导入示例:

线性回归

python 复制代码
from sklearn.linear_model import LinearRegression

逻辑回归

python 复制代码
from sklearn.linear_model import LogisticRegression

决策树分类器

python 复制代码
from sklearn.tree import DecisionTreeClassifier

决策树回归器

python 复制代码
from sklearn.tree import DecisionTreeRegressor

随机森林分类器

python 复制代码
from sklearn.ensemble import RandomForestClassifier

随机森林回归器

python 复制代码
from sklearn.ensemble import RandomForestRegressor

支持向量机分类器

python 复制代码
from sklearn.svm import SVC

K近邻分类器

python 复制代码
from sklearn.neighbors import KNeighborsClassifier

K近邻回归器

python 复制代码
from sklearn.neighbors import KNeighborsRegressor

朴素贝叶斯分类器

对于高斯朴素贝叶斯(适用于特征变量为连续型的情况):

python 复制代码
from sklearn.naive_bayes import GaussianNB

对于多项式朴素贝叶斯(适用于特征变量为离散型的情况):

python 复制代码
from sklearn.naive_bayes import MultinomialNB

XGBoost

注意:虽然XGBoost不是scikit-learn的原生库,但它非常流行且可以很好地与scikit-learn一起使用。安装XGBoost后,你可以这样导入:

python 复制代码
from xgboost import XGBClassifier  # 对于分类问题
from xgboost import XGBRegressor   # 对于回归问题

KMeans 聚类

python 复制代码
from sklearn.cluster import KMeans

DBSCAN 聚类

python 复制代码
from sklearn.cluster import DBSCAN

PCA 降维

python 复制代码
from sklearn.decomposition import PCA

在导入算法后,你可以创建该算法的实例,并通过调用其方法来训练模型、进行预测等。不过,请注意,在使用某些算法(如XGBoost)之前,你可能需要先安装对应的库(如pip install xgboost)。

相关推荐
sheeta1998几秒前
LeetCode 每日一题笔记 日期:2025.12.15 题目:2110.股票平滑下跌阶段的数目
笔记·算法·leetcode
Shawn_Shawn5 小时前
人工智能入门概念介绍
人工智能
极限实验室5 小时前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9967 小时前
Z-Image: 100% Free AI Image Generator
人工智能
智者知已应修善业7 小时前
【求中位数】2024-1-23
c语言·c++·经验分享·笔记·算法
爬点儿啥7 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉7 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
地平线开发者7 小时前
PTQ 量化数值范围与优化
算法·自动驾驶
sali-tec7 小时前
C# 基于halcon的视觉工作流-章68 深度学习-对象检测
开发语言·算法·计算机视觉·重构·c#
测试人社区-小明8 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算