sheng的学习笔记-AI-时序差分学习

AI目录:sheng的学习笔记-AI目录-CSDN博客

强化学习:sheng的学习笔记-AI-强化学习(Reinforcement Learning, RL)-CSDN博客

蒙特卡罗强化学习: sheng的学习笔记-AI-蒙特卡罗强化学习-CSDN博客

什么是时序差分学习

时序差分学习是强化学习中的免模型学习

免模型学习:在现实的强化学习任务中,环境的转移概率、奖赏函数往往很难得知,甚至很难知道环境中一共有多少状态.若学习算法不依赖于环境建模,则称为"免模型学习"

蒙特卡罗强化学习在一个完整的采样轨迹完成后再对所有的状态-动作对进行更新,因为在"完整"的采样轨迹后才更新,所以速度比较慢。

值函数估计

为了提升速度,可以基于动态规划的策略迭代和值迭代算法在每执行一步策略后就进行值函数更新

就是 目标值 = 上一步的目标值 + 本次奖赏 ,这种算法比 目标值 = (所有奖励的和)/ m 会快

Sarsa算法

每执行一步策略就更新一次值函数估计,于是得到图16.12的算法。该算法由于每次更新值函数需知道前一步的状态(state)、前一步的动作(action)、奖赏值(reward)、当前状态(state)、将要执行的动作(action),由此得名为Sarsa算法

Q-学习(Q-learning)算法

相关推荐
Juchecar15 小时前
文字与电的相似性:中间载体
人工智能
kyle-fang15 小时前
pytorch-张量
人工智能·pytorch·python
算家计算15 小时前
告别繁琐文档处理!PaddleOCR-VL-vLLM-OpenAI-API本地部署教程:精准解析文本/表格/公式
人工智能·开源
woshihonghonga16 小时前
Dropout提升模型泛化能力【动手学深度学习:PyTorch版 4.6 暂退法】
人工智能·pytorch·python·深度学习·机器学习
该用户已不存在16 小时前
AI编程工具大盘点,哪个最适合你
前端·人工智能·后端
机器学习ing.16 小时前
Vision Transformer(ViT)保姆级教程:从原理到CIFAR-10实战(PyTorch)!
人工智能·深度学习·机器学习
算家计算16 小时前
国产模型新王登基!刚刚,Kimi K2 Thinking发布,多项能力超越GPT-5
人工智能·开源·资讯
推理幻觉16 小时前
IDE/编码代理架构与 Cursor 相关研究(汇总)
ide·人工智能·架构·agent
YangYang9YangYan16 小时前
中专服装设计专业职业发展指南
大数据·人工智能·数据分析
新智元16 小时前
AI 科学家登场!12 小时抵人类科学家半年工作量,已有 7 项大成果
人工智能·openai