【论文解析】基于开源 Matrix 指令集扩展(矢量点积)的高性能 RISC-V 处理器“香山”(nanhu 版本)的 LLM 加速的研究

作者及发刊详情

摘要

正文

主要工作贡献

1)针对大模型自定义矢量点积扩展指令,并设计了专用硬件加速大语言模型的运算

2)基于香山处理器增加矢量点积计算单元和流水线处理逻辑,开发了包含上述指令的处理器nanhu-vdot

3)在FPGA上做测试,硬件资源和功耗几乎没有增加,矢量点积运算速度相比标量方法提高了 4 倍以上

4)在FPGA上进行GPT-2的推理,速度比纯软件实现提高了30%

实验评估

实验验证平台:Xilinx VU19P FPGA

选用模型: GPT-2

选用了三种模型。

工具:

  • 该测试系统基于香山处理器的操作系统环境
  • 通过测试接口将os可执行文件传输到FPGA的DDR中
  • 模型代码和推理程序存在linux的临时文件系统中

PPA

性能

对 GPT-2 小型模型、中型模型、大型模型的推理速度提升分别为 30.9%、27.8%、27.9%。

资源消耗

nanhu-vdot 相比"香山"(nanhu 版本)增加 15677 个 LUT 单元,占比 2.8%,增加 2486 个 Flip-Flop 单元,占比 0.9%,BRAMs 未增加。

功耗

"香山"(nanhu 版本)的功耗开销为 8.454W,nanhu-vdot 功耗为 8.494W。nanhu-vdot 相比于"香山"(nanhu版本)的功耗仅增加 0.5%.

软硬协同设计

硬件:编写矢量点积计算定制自定义扩展指令的单元设计代码,对矢量点积进行加速,与高性能处理器"香山"(nanhu 版本)一起编译,生成可仿真的比特流。

软件:

  • 增加自定义矢量点积计算指令
  • 修改编译器,使其支持扩展的指令
  • 修改 GPT-2 开源 C/C++代码,其中对于 int8 类型矢量点积计算部分通过汇编指令调用硬件执行单元,在调用硬件前后进行数据类型转换,最终通过硬件的加速计算得到文本输出。

自定义点积扩展指令

  • R-type 译码模式
  • Inst[11:7]表示交换后数据写回的目的寄存器号

模型修改

实现 GPT-2 大模型推理中元素类型为 int8 的矢量点积计算实现

硬件设计

设计了矢量点积计算单元和流水线处理逻辑,即VDOTU模块。

与CPU的集成方式

  • 将矢量点积扩展指令与高性能处理器"香山"(nanhu 版本)的流水线紧密、耦合。
  • 充分利用 "香山"的现有译码逻辑、寄存器堆和功能单元,尽可能减少额外的面积开销
  • 作为流水线中的执行部件,如下图中的EXE单元

VDOTU模块

该模块作为扩展指令的核心执行单元,采用SIMD向量化的执行方式。

  • VDOTU 默认配置为 8bit 的整形计算
  • 包含八路 8-bit 乘法器和七个加法器
  • 输出采用 64-bit,与处理器的通用寄存器大小一致

参考文献

该工作的硬件设计较为简单,大量的工作在原软件工作,特别是模型算子的移植。

值得借鉴的是该方案的测试流,极大的简化的软件工作,详细参考实验评估部分。

相关推荐
cycf5 小时前
CRC校验
fpga开发
landyjzlai6 小时前
AMBA总线(15)关于AXI-stream(sg模式)
arm开发·fpga开发·amba
白狐_7986 小时前
Quartus Prime 新手完全使用指南
fpga开发
Aaron158817 小时前
三种主流接收机架构(超外差、零中频、射频直采)对比及发展趋势浅析
c语言·人工智能·算法·fpga开发·架构·硬件架构·信号处理
博览鸿蒙18 小时前
一颗数字系统是如何在 FPGA 上“跑起来”的?
fpga开发
雨洛lhw1 天前
FPGA JTAG接口设计全解析
fpga开发·jtag
minglie11 天前
iverilog 配合 Makefile 搭建 Verilog 仿真工程
fpga开发
芒果树技术1 天前
MangoTree案例分享:基于AtomRIO FPGA平台,客户实现自适应主动减振
测试工具·fpga开发·模块测试
雨洛lhw1 天前
按键电路设计的细节
fpga开发
minglie12 天前
vio_uart的浏览器版上位机
fpga开发